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On-shell form factors
Hybrids of on-shell states and off-shell operators:

form factors
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1 Introduction

Significant developments of scattering amplitudes. Off-shell observables such as dilation
operators and correlation functions.

Fn,O(1, . . . , n) =

∫

d4x e−iq·x 〈p1 . . . pn|O(x)|0〉

= δ(4)(
n

∑

i=1

pi − q) 〈p1 . . . pn|O(0)|0〉 (1.1)

1

⟨p1p2…pn |0⟩ ⟨𝒪1𝒪2…𝒪n⟩

(work in momentum space)



Operator examples
Operators are important quantities in QFT.

Examples include conserved currents, such as 
stress-tensor       , and U(1) current in QED

• Electromagnetic form factor (g-2)

⟨e−(p′￼) |Jμ(0) |e−(p)⟩ =
Jμ = ψ̄γμψ

Tμν

e−(p)

γ(q)

e−(p′￼)

Jμ

See e.g. Cvitanovic, Kinoshita 1974  (for a 3-loop computation!)

Jμ



Operator examples
Operators also appear as interaction vertices in 
effective field theories (EFT)

Higgs boson @ LHC
The dominant production mechanism is the 
gluon fusion through a top quark loop.

p

p

g H
t

Effective gluon-Higgs vertex:

allows us to study this effect and obtain the two-loop anomalous dimensions for the first time.

The rest of the paper is organized as follows. We first review the effective action and

divergence structures in section 2. Then we explain the strategy of computation in section 3.

The results are presented in section 4, followed by a discussion section.

2 Setup

2.1 Effective Lagrangian

Leff = C0Htr(G2) +O

(

1

m2
t

)

, (2.1)

Leff = C0O0 +
1

m2
t

4
∑

i=1

CiOi +O

(

1

m4
t

)

, (2.2)

Higgs production from gluon fusion can be computed using an effective Lagrangian

Leff = Ĉ0O0 +
1

m2
t

4
∑

i=1

ĈiOi +O

(

1

m4
t

)

, (2.3)

where O0 = Htr(G2) is the leading term, and the subleading terms contain dimension-7

operators [35–39]

O1 = Htr(DρGµνD
ρGµν) , (2.4)

O2 = Htr(G ν
µ G ρ

ν G µ
ρ ) , (2.5)

O3 = Htr(DρGρµDσG
σµ) , (2.6)

O4 = Htr(GµρD
ρDσG

σµ) . (2.7)

In this paper, we will focus on the pure gluon sector. The last two operators have zero

contribution in the sector and only contribute when there are internal quark lines. The full

results including complete quarks will be presented else where [? ].

An amplitude with a Higgs boson and n gluons is equivalent to the form factor with an

operator Oi

FOi,n =

∫

d4x e−iq·x〈p1, . . . , pn|Oi(x)|0〉 , (2.8)

where the operator Oi corresponds to a Higgs-gluon interaction term Oi in the effective

Lagrangian with the Higgs field stripped off, i.e. Oi = HOi, and q2 = m2
H . In the following,

we will refer Higgs amplitudes as form factors.

Using Bianchi identity one can decompose the operator O1 as (see e.g. [36])

O1 =
1

2
∂2O0 − 4 gO2 + 2O4 . (2.9)

Since O4 has no contribution in the pure gluon sector, we have the relation for the form factor

FO1 =
1

2
q2 FO0 − 4 g FO2 , (2.10)

where the partial derivatives reduce to q which is the total momentum flowing through the

O0 operator. This should serve as self-consistency check for the result.

– 3 –

2. pT distribution of Higgs Bosons

At LO, the Higgs boson has no pT and a transverse momentum spectrum for the Higgs

is first generated by the process, gg ! gh, which is an NLO contribution to the gluon

fusion process[48]. As pT ! 0, the partonic cross section for Higgs plus jet production

diverges as 1/p2
T ,

d�̂

dt
(gg ! gh) = �̂0

3↵s

2⇡

⇢
1

p2
T

✓
1 �

m2
h

s

◆4

+ 1 +

✓
m2

h

s

◆4�

�
4

s

✓
1 �

m2
h

s

◆2

+
2p2

T

s

�
, (117)

where �̂0 is the LO gg ! h cross section given in Eq. 90, and s, t and u are the partonic

Mandelstam invariants. The pT spectrum for Higgs plus jet at LO is shown in Fig. 13,

where the contributions from the gg and qg, qg initial states are shown separately. Also

shown is the mt ! 1 limit of the spectrum that is derived from the e↵ective Lagrangian of

Eq. 97 . The e↵ective Lagrangian approximation fails around pT ⇠ 2mt. In this process,

there are several distinct momentum scales (pT , mh, mt), as opposed to gluon fusion where

there is only a single scale (mh/mt) at LO. The expansion in mh
mt

for gg ! gh receives

corrections of O( s
m2

t
,

p2
T

m2
t
) and for pT

>
⇠ 2mt, the EFT large top quark mass expansion

cannot be used to obtain reliable distributions.

NLO, NNLO, and N3LO radiative corrections to Higgs plus jet production have been

calculated[49–52] using the mt ! 1 approximation. The lowest order result of Eq. 117

is then reweighted by a K factor derived in the mt ! 1 limit for each kinematic bin.

The e↵ects of the higher order corrections are significant and increase the rate by a factor

of around 1.8 as shown in Fig. 14. The singularity of the LO result at pT = 0 is clearly

visible in Fig. 14 and we note that after the inclusion of the NLO corrections, the pT

spectrum no longer diverges as pT ! 0.

The terms which are singular as pT ! 0 can be isolated and the integrals performed

explicitly. Considering only the gg initial state[53],

d�

dp2
T dy

(pp ! gh) |p2
T!0⇠ �̂0

3↵s

2⇡

1

p2
T


6 log

✓
m2

h

p2
T

◆
� 2�0

�
g(zey)g(ze�y) + ... (118)

where z ⌘ m2
h/S, �0 = (33 � 2nlf )/6, and nlf = 5 is the number of light flavors. Clearly

when pT << mh, the terms containing the logarithms resulting from soft gluon emission

can give a large numerical contribution. The logarithms of the form ↵n
s logm(m2

h/p
2
T ) can

32

Higgs + multi-gluon scattering is a form factors!

Other connections and applications:

     Anomalous dimension, mass spectrum, critical exponents, integrability, …



Form factors at strong coupling

Alday, Maldacena 2007Form factors as string minimal surfaces

T-duality

Y-system formulation Maldacena, Zhiboedov 2010 (for AdS3)

Gao, GY 2013 (for AdS5)Indicate hidden structure

N=4 SYM               Type IIB string theory in
AdS/CFT

AdS5 ⇥ S5



Feynman diagram

• universal

• simple rules

• intuitive picture

Standard textbook method:



Feynman diagram

“Like the silicon chips of more recent years, the Feynman diagram 
was bringing computation to the masses.”  

                                                                        — Schwinger



Feynman diagram

“Like the silicon chips of more recent years, the Feynman diagram 
was bringing computation to the masses. Yes, one can analyze 
experience into individual pieces of topology. But eventually one 
has to put it all together again. And then the piecemeal approach 
loses some of its attraction.”  

                                                                        — Schwinger



Feynman diagram

n-gluon tree amplitudes:
n 4 5 6 7 8 9 10

# graphs 4 25 220 2485 34300 559405 10525900

Practical application can be very complicated.



n-gluon tree amplitudes:
n 4 5 6 7 8 9 10

# graphs 4 25 220 2485 34300 559405 10525900

n-gluon MHV tree amplitudes: [Parke, Taylor, 1986]

1. Introduction

Quantum field theory is the pillar on which modern physics rests. It is an indispensable
tool from condensed matter physics to cosmology to particle physics and its success in de-
scribing nature has only recently again been demonstrated in the discovery of a Higgs-like
boson at the LHC [1,2]. But still, eighty years after quantum field theories have first been
studied, no four-dimensional, interacting quantum field theory has ever been solved ex-
actly. The lack of exact solutions is partly explained by that fact that standard methods for
the perturbative computation of observables using Feynman diagrams work nicely in prin-
ciple, but quickly become cumbersome beyond the simplest examples, making it difficult
to generate exact data. However, the final result is often much simpler than intermedi-
ate expressions. The prime example for this is the Parke-Taylor formula [3], describing a
colour-ordered n-gluon maximally helicity violating (MHV) scattering amplitude1 at tree
level, which, written in spinor helicity variables, is given by

Atree
n (1+, . . . , i−, . . . , j−, . . . , n+) =

〈ij〉4

〈12〉 · · · 〈n1〉 . (1.1)

This formula is valid for any number n of gluons. The simplicity of this one-line formula is
to be compared with the effort of calculating and summing up O(n!) Feynman diagrams,
every single one being more complicated than the final result. This formula begs for
another, simpler description.

Over the last decade new powerful methods were developed that allow the calculation
of scattering amplitudes without resorting to Feynman diagrams. In fact, the proof of the
Parke-Taylor formula Eq.(1.1) is by now textbook material (see, for example, [4]). This
progress is mostly due to calculations performed in a special theory, N = 4 supersym-
metric Yang-Mills theory with gauge group SU(N), which we abbreviate as N = 4SYM.
This theory is conformally invariant even at the quantum level and is currently the best
candidate for being a completely solvable quantum field theory, at least in the planar
limit N → ∞. In fact, the scaling dimension of certain operators in N = 4SYM can by
now be calculated efficiently using integrability techniques at all values of the coupling
constant [5–10] and it would be desirable to understand how this success can be lifted to
more complicated observables.

After scaling dimensions, scattering amplitudes are the simplest quantities character-
ising a theory. They are of course richer objects than operator dimensions because they
are functions of the kinematical invariants and not just numbers, but they still depend
solely on on-shell degrees of freedom. Another observable closely related to scattering
amplitudes are form factors, which are basically scattering amplitudes with operator in-
sertions and therefore mixtures between off-shell and on-shell degrees of freedom. While

1MHV amplitudes describe the scattering of n outgoing gluons with n− 2 gluons having positive helicity
and 2 gluons having negative helicity. Accordingly, amplitudes with k gluons having negative helicities
are called Nk−2MHV.

Surprising simplicity
Practical application can be very complicated.

Written in spinor helicity formalism (Chinese Magic) 
by Xu, Zhang, Chang 1984



Modern amplitudes methods

“A Renaissance of the S-Matrix Program”

S-matrix program

Wheeler 1937

Heisenberg 1943

S-matrix bootstrap by 
Chew, Mandelstam, etc

1950s-1960s

Modern amplitudes

On-shell methods



S-matrix program

“The S-matrix is a Lorentz-invariant analytic function of all 
momentum variables with only those singularities required 
by unitarity.” 

“One should try to calculate S-matrix elements directly, 
without the use of field quantities, by requiring them to 
have some general properties that ought to be valid, .…”  

— Eden et.al, “The Analytic S-matrix”, 1966



One-loop structure

Consider one-loop amplitudes:

What we really want



Unitarity cuts
Using simpler tree-level blocks, one can derive the coefficients 
more efficiently:

[Bern, Dixon, Dunbar, Kosower 1994]

[Britto, Cachazo, Feng 2004]

Cutkosky cutting rule:

Figure 8: One-loop amplitudes expanded in scalar basis.

Figure 9: Quadruple-cut of the one-loop four-gluon amplitude.

is able to determine the complete integrands, and after performing integration, they will
give the full amplitudes.

Moreover, often we want to compute the coe�cients of basis integrals. These coef-
ficients are also rational functions. To determine a given coe�cient, it will be enough
to consider some cut channels rather than the full amplitudes. Once the coe�cients are
obtained, one can multiply them with the basis integrals, and in this way, one recovers
the full amplitudes.

Below we will use explicit examples to manifest these ideas. We mostly focus on the
one-loop examples in pure YM theory. For the higher-loop cases, we will focus on the
N = 4 SYM theory.

5.1 One-loop amplitudes

The massless one-loop amplitudes can be always expanded in the term of a set of scalar
integral basis as shown in Figure 8.

The basis integrals are independent of the specific theory and are also obtained once-
for-all. The truly theory-dependent information is contained in the coe�cients, which are
the main goal of the computation.

5.1.1 Quadruple cuts

Let us first consider the simple quadruple cut for a four-gluon amplitude.

0 = l21 = (l1 � p1)
2 = (l1 � p1 � p2)

2 = (l1 + p4)
2 . (5.2)

The four cut constraints are enough to fix the four-dimensional loop momentum. There
are two solutions

l[1]1 =
[12]

[42]
�1�̃4 , l[2]1 =

h12i

h42i
�4�̃1 , (5.3)

18

generalized multiple cuts



On-shell methods 

Scattering Amplitudes Correlation Functions

Form Factors

O

O1

O2 O3

Figure 1: Form factors provide a bridge between amplitudes and correlation functions.
By imposing on-shell unitarity cuts (indicated by the red dash lines), the amplitudes are
building blocks in form factors, and so are form factors in correlation functions.

It should be fair to say that among these developments, one of the most important ideas is
the use of on-shell methods, such as the spinor helicity formalism [11, 12, 13, 14], the tree-
level recursion relations [15, 16] and the (generalized) unitarity methods [17, 18, 19]. While
scattering amplitudes are central physical quantities in quantum field theory, there are
other important objects, such as gauge invariant operators. Computing their anomalous
dimensions and correlation functions has also been an important subject. A question
that one may ask is: can the modern advances of scattering amplitudes be applied to
more general observables such as anomalous dimensions and correlation functions? At
first sight the answer seems to be negative, because unlike amplitudes, gauge invariant
operators are o↵-shell, therefore, the on-shell methods seem not applicable. Fortunately,
this problem can be overcome with the help of form factors.

Form factors are the matrix elements between on-shell asymptotic states and gauge
invariant operators. The explicit definition of a n-point form factor can be given as

FO,n =

Z
d
D
x e

�iq·x
h1 · · ·n|O(x)|0i = (2⇡)D�(D)

⇣
q �

nX

i=1

pi

⌘
h1 · · ·n|O(0)|0i, (1)

where pi are the on-shell momenta of n asymptotic particle states, and O is a local
operator. By Fourier transformation, q =

P
i pi is the o↵-shell momentum carried by the

operator. Therefore, form factors are partially on-shell and partially o↵-shell quantities,
and they provide a natural bridge connecting the worlds of amplitudes and correlations
functions, as illustrated in Figure 1.

In this review we will give an introduction to form factors in N = 4 super-Yang-
Mills theory (SYM). N = 4 SYM has been the primary model for the discovery and the
developments of AdS/CFT correspondence [20, 21, 22]. It has also been a very important
experimental ground for the modern amplitude developments. The idea of unitarity cut
method was first applied to compute one-loop amplitudes in N = 4 SYM in 1994 by Bern,
Dixon, Durban and Kosower [17, 18]. In 2003 Witten’s groundbreaking work provided a

3

On-shell methods can be applied to operators and study EFT, 
for both the operator construction and high-loop renormalization.



Outline

Introduction to form factor

Master-bootstrap and MTP

CK-duality and double-copy

• 2106.01374 [PRL (2021)], Yuanhong Guo, Lei Wang, GY

• 2205.12969, Yuanhong Guo, Qingjun Jin, Lei Wang, GY



Master bootstrap method

Ansatz in master 
integral expansion Physical constraints Solution of 

coefficients

IR divergences

Collinear factorization

ℱ(l),ansatz = ∑
i

Ci I(l)
i

Unitarity cut

ℱ(l),ansatz = ∑
i

Ci I(l)
i

Spurious-pole cancellation

HWe apply this strategy to a frontier two-loop five-point 
scattering problem (Higgs plus four partons in N=4 SYM):



Outline of two-loop computation

4

j

k

l

i

`1

(a) BPb

j

k

l

i
`1

(b) TP

i

j k

l

`1 `2

(c) dBox2c (d) Unitarity cuts

FIG. 3: Fig. (a)-(c) are master integrals related to
remaining 10 free parameters. All of them can be

determined by the unitarity cuts in Fig. (d).

First, the divergent parts must reproduce that of

I
(2)

4,BDS
in (11). By matching (19) with Sym(I(2)

4,BDS
) at

1/✏m orders with m = 4, 3, 2, 1, one can solve for 139 of
ca,i. Next, after subtracting the BDS part, the finite re-
mainder in collinear limits should match with the 3-point
result as (12), which fixes 44 parameters. Furthermore,
the absence of spurious pole h24i implies the constraint

(14) on G
(2)

a . Applying this constraint at symbol level up
to finite order, the remaining degree of freedom is 22.

The symbol does not concern the terms that contain
transcendental numbers such as ⇡, ⇣n. It is therefore
worth considering the full function of the master inte-
grals [8]. Practically, to fix the coe�cients, it is conve-
nient to do numerical computation with high enough pre-
cision (see next section for more discussion on numerics).
Consider further the IR and then collinear constrains at
function level, the degrees of freedom are reduced to 17
and then 10. The spurious pole condition (14) is auto-
matically satisfied up to finite order and does not provide
any new constraint.

We find that all terms depending on remaining 10 pa-
rameters are related to three kinds of master integrals:
IUT

BPb
(i, j, k, l), IUT

TP
(i, j, k, l), and IUT

dBox2c
(i, j, k, l), whose

topologies are given in Fig. 3. Interestingly, their numer-
ators are all proportional to tr5 ⇥ µij , where

tr5 = 4i✏µ⌫⇢�p
µ
1
p⌫
2
p⇢
3
p�
4
, (20)

and µij = `�2✏
i · `�2✏

j is related to the components of
the loop momenta beyond four dimensions. These terms
can be organized as

P
10

i=1
xiG̃i, where xi depend on free

parameters and

G̃1 =IUT

TP
(1, 2, 3, 4) + IUT

TP
(3, 2, 1, 4) , (21)

G̃2 =IUT

BPb
(1, 2, 3, 4)� IUT

BPb
(4, 3, 2, 1) + (p1 $ p3) ,

G̃3 =B1I
UT

dBox2c
(1, 2, 3, 4) +B2I

UT

dBox2c
(3, 2, 1, 4) ,

together with other G̃i given by cyclic permutations. All
G̃i functions are free of IR divergences and vanish in the
collinear limit, and they are also free of spurious pole up
to finite order; thus they are not constrained in the above
procedure. Additionally, the integrals IUT

dBox2c
are of O(✏)

order, so they are irrelevant if one is only interested in
getting the ✏0 order of the form factor. All these master
coe�cients can be fixed by the single type of two-double
cuts shown by Fig. 3(d), given by the product of three

Constraints Parameters left

Symmetry of (p1 $ p3) 221

IR (Symbol) 82

Collinear limit (Symbol) 38

Spurious pole (Symbol) 22

IR (Function) 17

Collinear limit (Funcion) 10

If keeping only to ✏0 order 6

Simple unitarity cuts 0

TABLE I: Solving for parameters via constraints.

tree building blocks: F
(0)

3
A

(0),MHV

4
A

(0),MHV

5
. With this

cut constraint, we fix all remaining degrees of freedom.
Let us comment on the master integral IUT

TP
. It is a

linear combination of two masters used in [7, 8] as

j

k

l

i
`1 tr5µ11 = i

j k

l
`1

tr5µ11

2✏
�

j

k

l

i

`1

tr5µ11

✏
(22)

in which the UT numerators are indicated. The integral
IUT

TP
has a few nice properties: (1) It starts from O(✏0)

order and has no double propagator; (2) The final form
factor solution shows that the two masters on the RHS
of (22) precisely combine into IUT

TP
, suggesting the latter

to be a more physical choice. Thus we use IUT

TP
to replace

the first integral on the RHS of (22) in the 221 master
basis.
We summarize the steps of applying constraints and

the remaining parameters after each constraint in Table I.
All master coe�cients, up to the spinor factors Ba, are
small rational numbers, and the full solution is provided
in the ancillary file.
As cross checks, we have also applied a spanning set

of D-dimensional unitarity cuts and find full consistency
with the bootstrap result.

FULL FORM FACTOR AND REMAINDER

The full analytic form factor can be obtained in terms of
Goncharov polylogarithm functions (GPL) using the an-
alytic expressions of masters [8]. We recall that the result
is determined by seven independent Lorentz invariants:
six parity-even Mandelstam variables sij = (pi+pj)2 and
one parity-odd variable tr5 (only the sign of tr5 matters).
In GPLs given in [8], a special set of function letters are
used based on the SDE approach [65], where a transfor-
mation is used to simplify the di↵erential equations. A
brief discussion of the kinematics in GPLs are given in
the supplemental material.
In Table II, we give a numerical data point evaluated

via GiNaC [66] through the Mathematica interface pro-
vided by PolyLogTools [67]. The result is cross-checked

Ansatz in master 
integral expansion

Solution of 
coefficients

ℱ(2),ansatz
tr(ϕ3

12),4
= ∑

i

Ci I(l)
i

ℱ(2)
tr(ϕ3

12),4
= ∑

i

Ci I(l)
i

Guo, Wang, GY  PRL 2021



Master bootstrap method

Ansatz in master 
integral expansion Physical constraints Solution of 

coefficients

IR divergences

Collinear factorization

ℱ(l),ansatz = ∑
i

Ci I(l)
i

Unitarity cut

ℱ(l),ansatz = ∑
i

Ci I(l)
i

Spurious-pole cancellation

The strategy does not rely on special symmetries of the theory, thus 
can be applied to general theories.



Maximal Transcendentality Principle

N=4 SYM QCD

Maximal transcendentality principle 
Kotikov, Lipatov, 2001

For certain physical quantities, the maximally transcendental parts 
are equal between the two theories:

Anomalous dimensions

Form factors

Wilson lines

Kotikov, Lipatov, Onishchenko, Velizhanin 2004

Brandhuber, Travaglini, GY 2012 

Li, Manteuffel, Schabinger, Zhu 2014 

1. 常见的超越数和超越函数有哪些，那一类的函数会出现在费曼积分中？

2. 物理量中会出现这类函数的物理原因是什么？

3. 这些函数是否有什么联系，是否有有效的方法计算它们，或者是否有方法简化已
知的结果？

4.

3 从从从超超超越越越数数数π说说说起起起

大家都知道数（这里我们指实数或者复数）可以分为有理数和无理数。有些人可
能不太熟悉的是，数也可以分为代数数和超越数。可以对应于有理系数多项式方程的
根的数就是代数数(algebraic number)，反之则为超越数(transcendental number)。有理
数都是代数数，超越数都是无理数，反之则不对。比如无理数

√
2是方程

x2 − 2 = 0 (2)

的根，所以它是代数数。

代数数是可数的，而大部分的数都不可数的，所以超越数远比代数数多得多。人
们最熟知的超越数大概就是圆周率π了。虽然超越数很多，但如何证明一个数是超越数
往往非常困难。

4 超超超越越越数数数和和和超超超越越越函函函数数数

Hermite-Lindemann-Weierstrass定理：考虑一任意非零复数z，那么在z和ez二者中
必有其一是超越数。利用这一定理，我们可以很容易证明为什么e和π是超越数：

1 ∼ e1 , −1 = eiπ ∼ π . (3)

ζ数数数

场论中经常出现的超越数是ζ数:

ζk =
∞
∑

n=1

1

nk
, k ≥ 2 . (4)

如果我们将n做解析延拓，那么得到的就是黎曼ζ函数，和著名的黎曼猜想有直接的联
系。

当k为偶数时，ζ数正比于π2k:

ζ2k =
(−1)k+1B2k(2π)2k

2(2k)!
, (5)
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其中B2k代表伯努利数：

B2 =
1

6
, B4 = − 1

30
, B6 =

1

45
, ... . (6)

对奇数k情形人们还了解不多，只知道ζ3是无理数，是否是超越数目前都没有证
明。

多多多重重重对对对数数数函函函数数数（（（Polylogarithm）））

多重对数函数，英文称为Polylogarithm，定义为

Lik(z) =
∞
∑

n=1

zn

nk
, (7)

或者以递推的积分形式定义为

Lik(z) =

∫ z

0

Lik−1(t)

t
dt , Li1(z) = − log(1− z) . (8)

『『『多多多重重重』』』推推推广广广

多重ζ数，multiple zeta value (MZV):

ζk1,...,km =
∞
∑

n1>...>nm>0

1

nk1
1 ...nkm

m

, k1 > 1 . (9)

多重多重对数函数，multiple polylogarithm (MPL):

Lik1,...,km(z1, ..., zm) =
∞
∑

n1>...>nm>0

zn1

1 ...znm
m

nk1
1 ...nkm

m

. (10)

5 为为为什什什么么么物物物理理理学学学中中中的的的会会会出出出现现现超超超越越越函函函数数数

我们回到量子场论中的S-矩阵。通过大量计算的直接结果显示，超越函数往往是构
成这些量的基本单元。我们之前看到的例子中就包含了多重对数函数。是否有更直观
的说明为什么S-矩阵和上面提到的超越函数有这样紧密的关系呢？

S-矩阵工程（S-matrix program）是前QCD时期人们为了解释强相互作用而提出
的一套方法，这一方法不需要知道物理的细节（拉氏量），而只需通过一些基本的
物理假设。这一方法在近些年来越来越受到人们的重视，许多新的结果都是在这一
思路上发展出来的。其中，最重要的两点物理性质是幺正性（unitarity）和解析性
（analyticity）：（1）S-矩阵满足幺正性；（2）S-矩阵是一个解析函数，而其极点或
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Two-loop Higgs to 3-gluon

[Brandhuber, Travaglini, GY 2012]
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N=4 SYM



Master-bootstrap

Using the bootstrap strategy, we are able to prove all the previously 
observed maximally transcendental correspondence for Higgs 
amplitudes (i.e. form factors) and also find new examples.

universal 
constraints

universal 
results

Bootstrap

If the “theory-independent” constraints are strong enough to fix the 
results, then the results must be also theory independent.

This is a next-to-minimal form factor, and whose collinear limits will provide new important

constraints. Moreover, this form factor is equivalent to the Higgs-plus-three-parton ampli-

tudes in the heavy top mass limit by integrating out the heavy top quark [23–27, 78, 79].

The full two-loop QCD corrections were obtained in [6], and the result in N = 4 SYM was

obtained in [5]. It turns out that the maximally transcendental parts of the results in QCD

and N = 4 SYM satisfy [5, 12]:

F (L),N=4

L⇠tr(F 2)
(1, 2, 3) = F (L),QCD

tr(F 2),M.T.
(1g, 2g, 3g) = F (L),QCD

tr(F 2),M.T.
(1q, 2q̄, 3g)

���
CF!CA

, (4.2)

for L = 1, 2. One main goal of this section is to provide a proof for the relation (4.2). Here

in N = 4 SYM theory, L is the chiral Lagrangian which contains tr(F 2) as a component,

see e.g. [80, 81].7 For our discussion of the maximally transcendental part, it is enough

to focus on tr(F 2) since other components in the supermultiplet have only contribution of

lower transcendentality. Since the field strength operator can be decomposed as self-dual and

anti-self-dual parts as

tr(Fµ⌫F
µ⌫) =

1

2

⇥
tr(F↵�F

↵�) + tr(F̄
↵̇�̇

F̄ ↵̇�̇)
⇤
, (4.3)

for simplicity (and without loss of generality), in the following discussion we will take the

operator as the self-dual part O2 = tr(F↵�F↵�). The minimal two-point tree-level form

factors is F (0)

O2
(1�, 2�) = h12i2.

As a brief outline, in Section 4.1, we will show that the constraints from IR together with

collinear limits can fix the form factor in N = 4 up to the two-loop order. In Section 4.2, we

consider further the form factors in QCD, and together with the use of unitarity cuts for the

F (l),QCD

tr(F 2)
(1q, 2q̄, 3g) case, then the relations (4.2) can be proven.

4.1 Bootstrapping the N = 4 form factor

As a warm-up, we consider the form factors of stress-tensor supermultiplet in N = 4 super-

Yang-Mills theory, which are uniformly transcendental with weight 2L at L loops. The loop

correction I(L)

O2,3
can be defined by factorizing out the tree-level form factor from the loop-level

as

F (L)

O2,3
(1, 2, 3) = F (0)

O2,3
I(L)

O2,3
(1, 2, 3) . (4.4)

and I(L)

O2,3
are functions depending on three Mandelstam variables {s12, s23, s13}.

4.1.1 One-loop case

At one loop, I(1)

O2,3
can be expanded in terms of 7 master integrals as

I(1)

O2,3
=c1I

(1)

Bub
(1, 2) + c2I

(1)

Bub
(2, 3) + c3I

(1)

Bub
(1, 3) + c4I

(1)

Bub
(1, 2, 3)

7The chiral Lagrangian belongs also to the larger stress-tensor supermultiplet which is half-BPS. We mention

that the same maximally transcendental function was also found in the two-loop three-point form factor of

the non-BPS Konishi operator in N = 4 SYM [82].

– 21 –

ℱ(2),𝒩=4
tr(F3) (1−,2−,3−,4+) = ℱ(2),QCD

tr(F3) (1−,2−,3−,4+)
nf→4Nc

(New 4-point example)



Outline

Introduction to form factor

Master-bootstrap and MTP
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• 2106.01374 [PRL (2021)], 2111.03021, 2112.09123,  Guanda Lin, Siyuan Zhang, GY

• 2111.12719, Guanda Lin, GY



In 2008 Bern, Carrasco and Johansson proposed an intriguing 
duality between color and kinematics factors:

Duality

Color factor Kinematic factor

〈i j〉 = εαβλαi λ
β
j , [i j] = εα̇β̇λ

α
i λ

β
j

O(x) = tr(FαβF
βγψγAφBCψ̄Dα̇ . . .)

PSU(2, 2|4) α, α̇|A A = 1, 2, 3, 4

ε→ 0
∑

&

&− p1 − p2
1

$2($−p1−p2)2

&2 → 0(&− p1 − p2)2 → 0
1
$2
→ 2πδ(+)(&2)

−→
x
←−−−−−−−−
blahblahblah

g
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sii+1

F (1)
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∑n
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X
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X
Y
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{∆i, Cijk}

〈Oi(x)Oj(0)〉 = δij
(x2)∆i

〈Oi(x1)Oj(x2)Ok(x3)〉 =
Cijk

|x12|
αij |x23|

αjk |x31|αik
(αij = ∆i +∆j −∆k)

−µ
d

µ
Oi(0) = [D,Oi(0)] = HijOj(0)

f̃abc = i
√
2fabc = Tr([T a, T b]T c)
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Gauge symmetry Spacetime symmetry

Color-kinematics duality

(conjecture)



Example: 4-pt amplitudeThe simplest example to understand the colour-kinematics duality is to consider

four-point gluon tree amplitudes.

s
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Fig. 1: Trivalent graphs of four-point tree amplitudes.

A special representation is given in terms of three trivalent graphs in Fig. 1,

Atree
4 (1, 2, 3, 4) =

cs ns

s
+

ct nt

t
+

cu nu

u
, (2.1)

where ni’s are kinematic factors and ci’s are colour factors given by the product of

structure constants f̃abc associated to each trivalent vertex, more explicitly,

cs = f̃a1a2bf̃ ba3a4 , ct = f̃a2a3bf̃ ba4a1 , cu = f̃a1a3bf̃ ba2a4 . (2.2)

The colour-kinematics duality requires that the numerators should satisfy the same

Jacobi relation of colour factors,

cs = ct + cu ⇒ ns = nt + nu . (2.3)

For more general tree-level amplitudes, the existence of such a representation has

been proved in [?].

The more remarkable and mysterious fact is that it also works at loop level. An

L-loop amplitudes can be represent as a sum over trivalent graphs,

A(L)
n =

∑

Γi

∫ L
∏

j

dD!j
1

Si

CiNi
∏

aDa
. (2.4)

For every propagator of a trivalent graph, one can take it as s channel and perform

t, u-channel transformation, as in Fig. 2, to generate two other graphs. The duality

requires that the numerators of these three graphs should satisfy the Jacobi relation

as the colour factors,

Ci = Cj + Ck ⇒ Ni = Nj +Nk . (2.5)
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Jacobi identity dual Jacobi relation

A4(1,2,3,4) =
csns

s
+

ctnt

t
+

cunu

u



Three-point form factor
Physical quantity: 

three-point form factor of stress-tensor multiplet in N=4 SYM:

Such a computation would be very difficult using traditional Feynman diagram method.

ℱ3 = ∫ d4x e−iq⋅x⟨p1, p2, p3 | tr(F2)(x) |0⟩

CK duality 

+ 


on-shell unitarity 

full-color results

up to four loops



CK-duality

Compact ansatz of 
the loop integrand

Strategy of loop computation

Cs = Ct + Cu Ns = Nt + Nu

2

s
1

2

4

3
t

1

2 3

4
u

1 4

2 3

FIG. 1. Trivalent graphs for four-point tree amplitudes.

REVIEW AND STRATEGY

Before discussing three-loop form factors, we briefly re-
view the color-kinematics duality, and an instructive ex-
ample is the four-gluon tree amplitude. It is always pos-
sible to represent the amplitude in terms of three cubic
graphs shown in Fig. 1,

A(0)
4 =

CsNs

s
+

CtNt

t
+

CuNu

u
, (2)

where Ci are color factors as products of structure con-
stants f̃abc for each trivalent vertex, andNi are kinematic
numerators that contain physical information. The color-
kinematics duality requires that the numerators should
satisfy the Jacobi relation of color factors as [1]

Cs = Ct + Cu ) Ns = Nt +Nu . (3)

As shown in Fig. 2, each internal propagator (not di-
rectly connected to the q-leg) is associated to a four-point
tree sub-graph, and loop integrals that contain s, t, u-
channel sub graphs are related by color Jacobi relation.
CK duality asks that their numerators also satisfy the
same Jacobi relations as (3). Because of the duality re-
lation applies to multiple number of propagators, the
numerators of di↵erent topologies are interlocked with
each other, and the CK-dual integrand is thus highly
constrained.

Due to color Jacobi relation, one can make a deforma-
tion of the numerator without changing the amplitude
result:

Ns ! Ns+s�, Nt ! Nt� t�, Nu ! Nu�u� , (4)

which is called a generalized gauge transformation (GT)
[2].

Before discuss the details of the construction, we
present the final form of the CK-dual integrand of 3-loop
3-point form factors:

F (3)
O2,3

= F
(0)
O2,3

X

�3

X

i

Z 3Y

j=1

d
D
`j

1

Si

Ci NiQ
↵i

P 2
↵i

, (5)

where sum over �3 is due to the permutation of external
on-shell momenta pi, i = 1, 2, 3. The symmetry factors
Si remove the overcounts from the automorphism sym-
metries of the graphs.

ts ua

b

d

c

a

b c

d
a d

b c

FIG. 2. Loop graphs related by Jacobi relation.

FIG. 3. Trivalent topologies for the form factor of tr(�2).

CK-DUAL SOLUTIONS

Now we construct the full-color three-loop integrands for
the three-point form factors. First we consider the form
factor of of the stress-tensor supermultiplet, which, with-
out loss of generality, can be simply chosen as tr(�2).

Three-loop form factor of tr(�2)

The first step is to construct an ansatz based on the
CK duality. There are 29 trivalent topologies to con-
sider, as given in Fig. 3. Using Jacobi relations, one can
choose two planar topologies as master integrals, which
are shown in Fig. 4.
Master graphs and zone-variable labeling of master nu-

merators has been listed in Figure. 4. The nice UV be-
havior provides constraint on the power-counting of loop
momenta. For N3, xa, xc can appear at most once, so
both (x2

ai)
1
, (x2

ci)
1, with i = 1, 2, 3, 4, and (x2

ac)
1 are al-

lowed; any term containing xb or containing more than
one xa or xc, such as (x2

ac)
1
, (x2

a0)
1 are forbidden. For

N2, only xb can appear and can appear at most twice, so
only x

2
bi can appear and can appear with power 2, 1, 0.

The total number of parameters are 316.
Given the ansatz, we now apply various constraints

to solve the parameters in the ansatz. We first demand
that each numerator respects the automorphism symme-
tries of the graph. With this only 105 parameters is
obtained. One can see that the symmetries provide a
strong constraint and can substantially reduce the num-
ber of parameters. Next we apply unitarity cut to solve
the remaining parameters. Since the total number of
these parameters is reasonably small (only about 100),
one can directly utilize the most constraining cuts, i.e.
the quadruple cuts in Fig. 5. With these two cuts, there

ℱ(ℓ) ∼ ∑
i

∫
Ci × Ni

∏D



CK-duality

Unitarity cuts

Ansatz of the 
loop integrand

Solving linear equations

Strategy of loop computation

Conjecture



CK-duality

Unitarity cuts

Ansatz of the 
loop integrand

Solving linear equations

Strategy of loop computation

Main challenge:  it is a prior not known whether the solution exists

Conjecture



Four loops

G. Lin, GY, S. Zhang, 2112.09123
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FIG. 2. Selected four-loop diagrams from the 229 topologies.

permutation operator �3 acts on F
(0)
3 , Ni, P 2

↵i
and Ci, ex-

changing external momenta and color indices associated
to them respectively.

With the integrand solution at hand, we also interest
in the dual conformal structure of form factors. Dual
conformal symmetry [29] is an insightful feature of scat-
tering amplitudes in N = 4 SYM, based on which the
amplitude/Wilson loop duality at weak coupling is found
[30, 31]. This symmetry is generalized to the Yangian
symmetry [32–34] and is closely related to the integra-
bility [35]. In contrast, the generalization to form factor
cases is much less discussed so far [36]. Form factors
are expected to be equivalently evaluated at weak cou-
pling from a periodic Wilson loop at strong coupling,
while actual comparison is currently been conducted up
to one-loop level [10]. In this Letter, we find that within
on-shell-q limit, the leading-color integrand of the con-
sidered form factor up to four-loop level bears the direc-
tional dual conformal invariance (DDCI) in the direction
of q-leg. A notable feature here is that these DDCI re-
sults include non-planar diagrams, which is similar to the
amplitude case [37]. We also comment on the expectation
of the relation between our new results and dual periodic
Wilson line pictures.

Following the strategy mentioned above, we firstly con-
struct the integrand ansatz and secondly solve the ansatz.
With the solution of the integrand at hand, we then study
some interesting limits of it, where the directional dual
conformal invariance (DDCI) of the planar form factor
part in onshell-q limit is mainly concerned. The complete
CK-dual solutions are provided in the ancillary files.

ANSATZ OF CK-DUAL INTEGRAND

The first step of the construction is to get all trivalent
diagrams which have the operator q-leg and three exter-
nal on-shell legs. As observed in [27, 38–40], for N = 4
SYM, it is reasonable to exclude tadpole, bubble and tri-
angle sub-graphs, unless the triangle involves the q-leg.
Under this criteria, there are 229 trivalent topologies to
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xcxd
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FIG. 3. Master topologies.

consider. Selected examples are shown in Figure 2: the
first column are planar diagrams which can be drawn on
a plane with the ends of the q-leg and three onshell legs
aligned at infinity; the second column are defined as q-
interior planar in the sense that after removing the color-
singlet q-leg the graphs are planar (they survive in the
large-Nc planar limit); the third column contains some
intrinsic non-planar diagrams; some special graphs that
are one-particle-reducible are shown in the last column.

The color factors Ci and propagators P 2
↵i

in (3) can
be directly read from these trivalent diagrams �i. The
truly non-trivial physical information are contained in
the kinematic numerators Ni which are the main task of
the construction. This is where the CK duality plays its
important role. The dual Jacobi relations (??) provide
linear relations connecting the numerators of di↵erent
topologies. As a result, one can use the kinematic numer-
ators of a small set of graphs, i.e. the master graphs, to
generate the numerators of all other diagrams. It is con-
venient to select planar diagrams as master graphs, and a
minimal set requires only four planar masters which are
shown in Figure 3.

Thanks to the CK duality, one only needs to construct
an ansatz for the master numerators, which are given as
polynomials of Lorentz product of momenta. For planar
diagrams, it is convenient to parametrize the momenta
by the dual coordinates corresponding to zones [29], such
as given in Figure 3, for example, `a = x1 � xa ⌘ x1a

in the first diagram. The numerators are thus polyno-
mials of proper distance variables x2

ij . For form factors
of protected operators in N = 4 SYM, one can impose
the power-counting constraint on the ansatz: a one-loop
n-point sub-graph carries no more than n � 4 powers
of the corresponding loop momentum [27], with an ex-
ception that if the sub-graph is a one-loop form factor,
the maximal power is n � 3 [38]. The detailed explana-
tion of such a power-counting constraint can be found in
[40, 41], here we just give an example about the first mas-
ter in Figure 3: since there are two pentagons, monomials
like (x2

ij)
2(x2

ai)
2(x2

cj) and (x2
ij)

3(x2
ac)(x

2
aj), i, j = 1, 2, 3, 4,

should be considered in the ansatz, and xb and xd are not
allowed to appear.

In practice, one can simplify the ansatz construction
by applying the symmetry as well as the maximal-cut
properties of the master graphs. This can be achieved
by starting from the rung-rule numerators [42, 43] and
then adding terms proportional to propagators according

3

(b) (d)

(a) (c) (e)

(f)

FIG. 4. Examples of unitarity cuts.

nation of such a power-counting constraint can be found
in [42, 43], and here we just examplify it by the first mas-
ter in Figure 3: since there are two pentagons, monomials
like (x2

ij)
2(x2

ai)
2(x2

cj) and (x2
ij)

3(x2
ac)(x

2
aj), i, j = 1, 2, 3, 4,

should be involved in the ansatz, while xb and xd are not
allowed to appear.

In practice, we can simplify the ansatz construction
by applying the symmetry as well as the maximal-cut
properties of the master graphs, which can be achieved
by starting from the rung-rule numerators [44, 45] and
then adding terms proportional to propagators according
to the graph symmetries. For instance, the rung-rule
numerator for the first master Nm

1 is

Nm
1 |rr =x2

13x
2
24x

2
a2x

2
a3(x

2
c1 � x2

14/2)� (x2
13)

2x2
24x

2
a2x

2
c4

� x2
13(x

2
14 � x2

13)(x
2
a2)

2x2
c4 + (1 $ 4)&(2 $ 3),

(4)
which captures the maximal cut of the diagram, and to
further complement the ansatz, contributions involving
propagators like x2

c2 and x2
c3 have to be considered in a

symmetry-preserving way, such as

Nm
1 = Nm

1 |rr+↵1x
2
13x

2
24((x

2
a2)

2x2
c3+(x2

a3)
2x2

c2)+... . (5)

In the end, a CK-dual integrand ansatz with 1433 pa-

rameters for F (4)
3 is reached, of which the four master

numerators contain 257, 562, 479 and 135 parameters
respectively.

PHYSICAL CONSTRAINTS AND SOLUTION

Given the ansatz, we apply various constraints to solve
for the parameters and also ensure the solution to satisfy
physical requirements.

First, we impose the condition that every numerator
Ni (besides the masters) shares the symmetry of the cor-
responding diagram �i and also generates the correct
maximal cut. These conditions involve only one numera-
tor at a time and are practically very convenient to solve.
Nicely, they provide significant restrictions on the ansatz,
reducing the number of parameters to 246.

Next, we require the CK-dual integrand ansatz as (3)
to match all generalized unitarity cuts [7–9]. Some typi-
cal cuts are illustrated in Figure 4. Cuts (a) and (b) are

relatively simple octuple cuts, cutting the four-loop form
factor into five tree blocks [46]. Such octuple cuts can
be first conducted, eliminating 94 parameters. Then the
septuple cuts, such as cut (c), and the sextuple cuts, such
as (d), are considered, further fixing 19 parameters. The
most complicated cuts are quintuple cuts like (e) and (f).
For instance, the cut (e) involves over a thousand cut dia-
grams, of which the sum should reproduce the non-trivial

tree product
R
d⌘F (0)

5 A
(0)
8 . We find that quintuple cuts

provide no further constraints on parameters indeed. Af-
ter all these cuts, we end up with a solution with 133
parameters. We stress that we have checked both planar
and non-planar cuts, and details for performing cuts can
be found in [43].

We also check that all dual Jacobi relations are satis-
fied. Thus we get the CK-dual four-loop physical inte-
grand in the form of (3) with 133 free parameters.

The final form factor result must be independent of
the 133 free parameters. As a further important check,
we find that the free parameters indeed all cancel after
performing the simplification of the integrand, which we
briefly explain as follows. Firstly, we express the triva-
lent color factors Ci in trace basis of group generators in
SU(Nc) gauge group, resulting in both Nc-leading and
Nc-subleading contributions as

F (4)
3 = F

(0)
3 f̃a1a2a3

�
N4

c

Z
I
(4)
pl +N2

c

Z
I
(4)
np

�
, (6)

where f̃a1a2a3 = tr(T a1T a2T a3) � tr(T a1T a3T a2). Here

76 topologies contributes to I
(4)
pl , containing diagrams

in the first and second columns of Figure 2, while 138

topologies contribute to I
(4)
np , involving those in the third

column of Figure 2. Note that 28 topologies contribute

to both I
(4)
pl and I

(4)
np , including the four master graphs

and also (A3) and (B3) in Figure 2. Moreover, it worth
noticing that 43 topologies out of 229 have zero color fac-
tors, such as (D2) in Figure 2, which do not contribute
to the final form factor but are important in the con-
struction via the CK duality. We then perform the sim-

plification for I
(4)
pl and I

(4)
np respectively, by expanding

the integrands in a set of basis, following the procedure
described in detail in [43]. After the simplification, we
achieve a result that is independent of all free parame-
ters.

The explicit four master numerator solutions with 133
free parameters and a set of dual Jacobi relations for
generating the numerators Ni of all trivalent topologies,
together with the symmetry factors Si, the color factors
Ci, and the propagator lists P↵i in the form of (3), are
provided in the ancillary files.

Unitarity cuts

2

those of others, and thus a relatively small ansatz can be
utilized rather than making ansatz for all topologies. The
second step is to solve the ansatz via constraints, where
topology symmetries are involved and generalized unitar-
ity method [7–9] is applied. Readers are also referred to
[6, 11, 31] for more details of general constructions.

Before entering the specific construction, we summa-
rize the final CK-dual integrand of the considered four-
loop three-point form factor as follows:

F (4)
3 =

X

�3

229X

i=1

Z 4Y

j=1

dD`j
1

Si
�3 ·

F
(0)
3 Ci NiQ
↵i

P 2
↵i

, (3)

where the sum is over 229 non-isomorphic cubic graphs;
Si are symmetry factors which remove the overcounting
from the automorphism symmetries of the graphs and the

permutation operator �3 acts on F
(0)
3 , Ni, P 2

↵i
and Ci, ex-

changing external momenta and color indices associated
to them respectively.

With the integrand solution at hand, we also interest
in the dual conformal structure of form factors. Dual
conformal symmetry [32] is an insightful feature of scat-
tering amplitudes in N = 4 SYM, based on which the
amplitude/Wilson loop duality at weak coupling is found
[33, 34]. This symmetry is generalized to the Yangian
symmetry [35–37] and is closely related to the integra-
bility [38]. In contrast, the generalization to form factor
cases is much less discussed so far [39]. Form factors
are expected to be equivalently evaluated at weak cou-
pling from a periodic Wilson loop at strong coupling,
while actual comparison is currently been conducted up
to one-loop level [40]. In this Letter, we find that within
on-shell-q limit, the leading-color integrand of the con-
sidered form factor up to four-loop level bears the direc-
tional dual conformal invariance (DDCI) in the direction
of q-leg. A notable feature here is that these DDCI re-
sults include non-planar diagrams, which is similar to the
amplitude case [41]. We also comment on the expectation
of the relation between our new results and dual periodic
Wilson line pictures.

ANSATZ OF CK-DUAL INTEGRAND

To start the construction, we first need to get all trivalent
diagrams, each of which contains one operator q-leg and
three external on-shell legs. As observed in [11, 20, 21,
42], for N = 4 SYM, it is reasonable to exclude diagrams
with tadpole, bubble and triangle sub-graphs, unless the
triangle is connected with the q-leg. Under this criteria,
there are 229 trivalent topologies to consider. Selected
examples are shown in Figure 2: the first column contains
planar diagrams which can be drawn on a plane with the
ends of the q-leg and three on-shell legs aligned at infinity;
the second column includes diagrams defined as q-interior
planar in the sense that after removing the color-singlet
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(A2)

(A3)

(B2)
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(C1)
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(C3) (D3)
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FIG. 2. Selected four-loop diagrams from the 229 topologies.
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FIG. 3. Master topologies.

q-leg, the graphs are planar (they survive in the large-Nc

planar limit); the third column involves some intrinsic
non-planar diagrams; some special one-particle-reducible
graphs are shown in the last column.
The color factors Ci and propagators P 2

↵i
in (3) can be

directly read from these trivalent diagrams �i, whereas
the truly non-trivial physical information is contained in
the kinematic numerators Ni which are the focus of our
construction. Here the CK duality plays a central role.
The induced dual Jacobi relations referring to (2) pro-
vide linear relations among the numerators of di↵erent
topologies. As a result, we can use the kinematic numer-
ators of a small set of graphs, i.e. the master graphs, to
generate the numerators of all other diagrams. Practi-
cally, it is convenient to select planar diagrams as master
graphs, and a minimal set requires only four planar mas-
ters shown in Figure 3.
With the planar master graphs at hand, we further

need to construct numerator ansatz for them. Firstly,
we expect the numerators are in fully local form, which
means the ansatz are polynomials of Lorentz products of
momenta. Moreover, for planar master graphs, we find
it convenient to parametrize the momenta by the dual
coordinates corresponding to zones [32] as, for example,
`a = x1 � xa ⌘ x1a in the first diagram of Figure 3,
and hence the ansatz are polynomials of proper distance
variables x2

ij . Secondly, since form factors of a protected
operator tr(�2) in N = 4 SYM are considered, we can
impose the power-counting constraint on the ansatz: a
one-loop n-point sub-graph carries no more than n � 4
powers of the corresponding loop momentum [11], with
an exception that if the sub-graph is a one-loop form fac-
tor, the maximal power is n� 3 [20]. The detailed expla-

Final solution with 133 free parameters!

Master graphs
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TABLE I. Number of cubic graphs, planar masters and free
parameters in CK-solution of three-point form factors up to
four loops. Note that the number of parameters are counted
based on the solutions obtained from minimal ansatzes.

L loops L=1 L=2 L=3 L=4

# of cubic graphs 2 6 29 229

# of planar masters 1 2 2 4

# of free parameters 1 4 24 133

contributions and include all—usually one has to find all
possible ways of planar projections and distribute the in-
tegrand equally among them.

We have performed explicitly checks for three-point
form factors up to four loops. The checks also use CK-
dual integrands with free parameters as input. to modify

DISCUSSION

In this paper we obtain for the first time the full-color
four-loop integrand of the three-point form factor in
N = 4 SYM. The color-kinematics duality has played
a crucial role in this construction by providing a very
compact integrand ansatz. The main challenge of the
computation is actually if a solution consistent with all
unitarity cut constraints exists. Remarkably, there is a
large solution space for the final four-loop CK-dual inte-
grand. In Table I, we summarize the some descriptions
of the CK-dual constructions up to four loops, including
also previous lower loop results in [38, 40]. One can see
that as the number of loops increase, the number of mas-
ters and the size of their ansatzes increase mildly. Impor-
tantly, the dimension of the CK-dual solution space also
grows when going to higher loop orders, which strongly
suggests that the construction can be applied to form
factors at five and even higher loops.

As another interesting aspect of this work, we show
that for the three-point form factor up to four loops, the
leading-Nc integrands in the limit of q2 ! 0 all satisfy
the directional dual conformal symmetry with a boost
vector bµ / qµ. This property should hold for more
general higher-point and higher-loop form factors, which
are supported by a unitarity based argument. It is thus
reasonable to closely inspect the directional dual con-
formal symmetry for the dual periodic Wilson lines at
both weak- and strong-coupling. On the other hand, for
the integrated planar form factors, the DDCI symmetry
should be broken and the cusp anomalies appear due to
IR divergences [30]. We expect that the cusp anoma-
lies can also be subtracted by the BDS ansatz, similar to
the amplitudes case, and can be well interpreted by the
anomalous conformal Ward identities [51] for the dual
Wilson lines. Furthermore, it is natural to ask whether
the directional dual conformal symmetry can be extended

to general conformal symmetry beyond the directional
bµ / qµ as well as the lightlike limit of q. Some dis-
cussions about the (general) dual conformal symmetry
for form factors as well as its Wilson line dual at one-
loop level are already given in [10, 36] but higher-loop
generalizations are still not completely clear. We also
mention that recently a non-perturbative result has been
obtained in [52, 53] (see also the related study for am-
plitudes [54]) originating from the integrability of N = 4
SYM [55] in the operator product expansion (OPE) limit
of the Wilson line and it would be interesting to have
a deeper comprehension about the form factor/periodic
Wilson line duality. We will give more details about the
above DDCI, as well as the cut-based proof, and further
generalizations elsewhere [? ].

Finally, to implement the four-loop integrals defi-
nitely deserves considerations. As discussed in the pre-
vious three-loop discussions [40], our form factors re-
sults should encode full-color IR divergences and splitting
functions. This is, however, not a trivial task even in the
large Nc limit, since the color-singlet q-leg results in in-
evitable contributions from non-planar topologies (the q-
interior topologies). Besides these di�culties, we are still
optimistic about solving the problem of loop integrations
in the future.
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Double-copy of form factor?

The double-copy of a local operator is not obvious: 
a “local” operator would break the diffeomorphism 
invariance in gravity.

𝒪(x) → ∫ d4x𝒪(x)
?

The solution is to impose CK duality.

∑
a

ca (na |εi→pi
)

Da
= 0 ∑

a

na (na |εi→pi
)

Da
= 0

ca = cb + cc na = nb + nc



An intriguing feature

Spurious poles Real propagators
Double-copy

Gauge theory Gravity theory

G. Lin and GY,  2111.12719

The CK-dual numerators contain spurious poles for the 
gauge theory form factors. After double-copy, the spurious 
poles in gauge theory can become real physical poles in 
gravity.



Example: 3-point form factor

where in the second equation we express the result in spinor helicity form in four dimensions.

A well-defined quantity in gravity should preserve the di↵eomorphism invariance, in other

words, it should be invariant under a transformation of graviton polarization tensor: "
µ⌫

3
Ñ

"
µ⌫

3
` p

pµ
3
⇠
⌫q. Here "

µ⌫

3
“ "

pµ
3
"
⌫q
3

with the brackets indicating the symmetric-traceless part,

and ⇠
⌫ is a reference vector satisfying ⇠ ¨ p3 “ 0. However, a naive double-copy of (3.4),

G
naive

3 “ p"3 ¨ p2q2
s23

` p"3 ¨ p1q2
s13

“ "
µ⌫

3
p2µp2⌫

s23
` "

µ⌫

3
p1µp1⌫

s13
, (3.8)

obviously breaks the di↵eomorphism invariance.

To solve this problem, the well-known solution is to impose the color-kinematics duality.

For scattering amplitudes in CK-dual representations, the di↵eomorphism invariance of the

double copy is ensured because kinematics numerator satisfy the same Jacobi relations as

color factors. Here for form factors, the color factors satisfy a di↵erent type of color relations,

coming from the color structure of local operators, and it is understandable that di↵eomor-

phism require the numerators satisfy similar relations. In this example, one needs to require

that

C1 “ C2 ñ N
CK
1 “ N

CK
2 . (3.9)

Given this requirement, the form factor can be written as

F 3p1�, 2�, 3gq “
´ 1

s23
` 1

s13

¯
C1N

CK
1 “ C1F3p1�, 3g, 2�q , (3.10)

where in the second equation we apply the color decomposition and F3 is the color-ordered

three-point form factor given in (3.7). Thus one finds CK-dual numerator solution as:

N
CK
1 “ N

CK
2 “ s13s23

s13 ` s23
F3p1�, 3g, 2�q . (3.11)

We stress that the numerators are uniquely determined and are also manifestly gauge invari-

ant.

When applying the double copy for (3.11), giving

G3 “ pNCK
1

q2
s23

` pNCK
2

q2
s13

“ s13s23

s13 ` s23

´
F3p1�, 3g, 2�q

¯
2

. (3.12)

The gauge invariance of the numerators immediately implies the di↵eomorphism invariance

of G3.

However, it seems to be disappointing that the numerator solutions (3.11) have a spurious

poles, and the spurious pole will not disappear in G3.

It is interesting that the s13 ` s23 “ q
2 ´ s12 is a simple pole, which looks like a Feynman

propagator, and the residue on this pole is

Res rG3s
s12“q2

“ p✏3 ¨ qq2 “
`
F2p1�, 2�q

˘
2 ˆ pA3pqS

2 , 3
g
,´q

Sqq2 , (3.13)

where F2p1�, 2�q “ 1 is the minimal form factor of trp�2q and

A3pqS

2 , 3
g
,´q

Sq “ ✏3 ¨ q , with q2 “ p1 ` p2, (3.14)

– 4 –
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of G3.

However, it seems to be disappointing that the numerator solutions (3.11) have a spurious

poles, and the spurious pole will not disappear in G3.

It is interesting that the s13 ` s23 “ q
2 ´ s12 is a simple pole, which looks like a Feynman

propagator, and the residue on this pole is
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“ p✏3 ¨ qq2 “
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S(q) �(p1)
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Figure 2. Feynman diagrams for the double copy of the three-point form factor in gravity theory.
The blue double line in this case is the massive scalar with mass m2 “ q

2. The black straight line is
still the (light) scalar while we doubled the spring line to represent gravitons.

is the three-point planar amplitude of a gluon and one pair of massive scalar particle S with

mass m
2 “ q

2 “ q2

2
, see e.g. [2]. In this way (3.13) can be interpreted as a factorization

formula

Res rG3s
s12“q2

“ G2p1�, 2�q M3pqS

2 ,´q
S
, 3hq , (3.15)

where G2 “
`
F2

˘
2
is the double copy of the minimal form factor and M3 “ pA3q2 is the

double copy of the three-point amplitude.

Clearly, (3.15) represent the factorization of the third Feynman diagram �c in Figure 2.

Furthermore, one can check that (3.13) also give a consistent factorization on the s13 and s23
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23
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13
q M3p´p�

13
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,´q
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example can capture most of the characteristics and help to clarify the generalization.
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The two-point minimal form factor is proportional to a delta function in the color space:

F 2p1�, 2�q “ �
a1a2 , (3.3)

which has a trivial kinematic part equal to one, and one can make a double-copy directly.

Thus the first interesting case is the three-point case.

3.1 Three-point form factors

We first consider the three-point form factor. At tree-level, there two cubic Feynman diagrams

�1,2 as shown in Figure 1. The form factor can be obtained as
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4-dimùùùñ
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A new graph 
in gravity

There is a nice factorization behavior at the new pole:
s13 + s23 = q2 − s12 = 0
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INTRODUCTION

Despite the very di↵erent nature, gauge and gravity the-
ories are known to be intimately related. The celebrated
AdS/CFT correspondence [1–3] shows that a gravity the-
ory in the AdS space can be equivalent to a gauge theory
living on the AdS boundary. Moreover, the perturba-
tive amplitudes in gauge and gravity theories are also
closely linked via the double copy as “gravity = (gauge
theory)2”, realized in various formalisms including the
Kawai, Lewellen and Tye (KLT) relations [4], the Bern,
Carrasco and Johansson (BCJ) double copy stemming
from the color-kinematics (CK) duality [5, 6], and the
Cachazo, He and Yuan (CHY) formula [7, 8]. An excel-
lent review about the double copy can be found in [9].

Apart from scattering amplitudes, which involve on-
shell asymptotic states only, gauge invariant local op-
erators also play important roles in gauge theories and
it is natural to ask: does a consistent double copy pic-
ture exist for physical quantities involving local opera-
tors? Nevertheless, the answer is not obvious at all, since
for example, local operators in gravity would break the
di↵eomorphism invariance.

In this paper, we make a concrete step towards ad-
dressing this question, by realizing both BCJ and KLT
double copy for the form factors [10–12]. Form factors
are defined as matrix elements between a gauge invari-
ant operator O and n on-shell states (see [13] for a recent
introduction and review),

FO,n =

Z
d
D
xe

�iq·x
h1 2 . . . n|O(x)|0i , (1)

where q =
P

n

i=1 pi is the o↵-shell momentum associated
with the operator. We find that in realizing the dou-
ble copy, the inclusion of gauge invariant local operators
indeed leads to intriguing new features.

One novel feature is that special spurious poles ap-
pear in the construction of CK-dual numerators in gauge-
theory form factors, and after double copy they become
new physical propagators in the gravity quantities, i.e.

spurious poles
double-copy
��������! physical propagators.

Besides, the factorization on the new propagators in grav-
ity implies that the gauge-theory form factors satisfy hid-
den relations when evaluated on the spurious poles, which
can be schematically shown as

~v · ~Fn

��
spurious pole

= Fm ⇥An+2�m, (2)

and may be understood as a generalization of BCJ rela-
tions [5] for form factors.
Below we explain these properties in detail with ex-

amples of tree-level form factors with O = tr(�2) in the
scalar-Yang-Mills theory. Similar discussions also apply
to form factors of other operators, such as  ̄ in QCD, of
which the form factors are equivalent to a class of Higgs
plus quarks and gluons amplitudes. This provides for the
first time a double copy for amplitudes involving a color
singlet particle. We will discuss more on this in the last
section.

INVITATION: A THREE-POINT EXAMPLE

Most new features of the form-factor double copy can be
illustrated by considering a simple example: the three-
point tree-level form factor F tr(�2),3(1

�
, 2�, 3g). In this

example, there are two cubic Feynman diagrams �a,b as
given in Figure 1, and the full-color form factor can be
written as

F 3(1
�
, 2�, 3g) =

CaNa("3, {pi})

s13
+

CbNb("3, {pi})

s23
, (3)

where the two vectors vA and v
B are

v
B “ tp4 ¨ p2, p4 ¨ pp2 ` p3qu, v

A “ 1

s123 ´ q2
tpp3 ¨ p1qpp4 ¨ p2q, pp3 ¨ p2qpp4 ¨ p1qu (5.15)

To be more precise, when the “spurious” propagators are on-shell, a generalized version

of BCJ relations for form factors and a decomposition of SFn are uncovered and lead to the

factorization property of Gn.

omit the series expansion of mFnSFn “ 1 on physical and spurious poles. Also, the null

space and derivation of null vectors. L:L:

p~v4 ¨ ~F4q
ˇ̌
s123“q2

“ F3p1�, 3g, 2�q A3pqS

3 , 4
g
,´q

Sq , (5.16)

where the (row) vector ~v4 and (column) vector ~F4 are

~v4 “ p⌧42, ⌧42 ` ⌧43q , ~F4 “
˜
F4p1, 3, 4, 2q
F4p1, 4, 3, 2q

¸
, (5.17)

with ⌧ij “ 2pi ¨ pj . One may notice that this is reminiscent of the BCJ relation for four-point

amplitudes [? ]:

“
s42F4p1, 3, 4, 2q ` ps42 ` s43qF4p1, 4, 3, 2q

‰ˇ̌
s123“q2

“ F3p1�, 3g, 2�q A3pqS

3 , 4
g
,´q

Sq . (5.18)

s42A4p1, 3, 4, 2q ` ps42 ` s43qA4p1, 4, 3, 2q “ 0 . (5.19)

6 A string theory generalization

Comments on the connection to monodromy relations from string theory.

7 Generalization for trpF 2q operator

8 Discussion

Finally, one can check that G3 also match the expression from the Feynman diagrams in

Figure 2. Here G3 can be understood as a four-point tree-level amplitude

G3 “ M4pqS , 1�, 2�, 3hq

in the gravitational theory involving a massless scalar � and a massive scalar S:

L
sG “ ?´gR ` Bµ

�Bµ� ` Bµ
SBµS ` m

2

SS
2
. (8.1)
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Not a residue!

Ress12→0A4 = A3 × A3

Comparing to the usual 
factorization: s12 → 0
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(BCJ) and the Kawai, Lewellen and Tye (KLT) formalisms are considered and novel properties are
observed. One remarkable feature is that through the double-copy construction, certain spurious
poles hidden in the gauge form factors become physical propagators in gravity. This mechanism
also reveals new hidden relations for form factors which can be understood as a generalization of
the BCJ relations. The same double-copy prescription applies as well to tree-level QCD amplitudes
involving a color-singlet Higgs particle. The double copy of form factors suggests a possible new
class of observables in gravity and string theory.

INTRODUCTION

Despite the very di↵erent nature, gauge and gravity the-
ories are known to be intimately related. The celebrated
AdS/CFT correspondence [1–3] shows that a gravity the-
ory in the AdS space can be equivalent to a gauge theory
living on the AdS boundary. Moreover, the perturba-
tive amplitudes in gauge and gravity theories are also
closely linked via the double copy as “gravity = (gauge
theory)2”, realized in various formalisms including the
Kawai, Lewellen and Tye (KLT) relations [4], the Bern,
Carrasco and Johansson (BCJ) double copy stemming
from the color-kinematics (CK) duality [5, 6], and the
Cachazo, He and Yuan (CHY) formula [7, 8]. An excel-
lent review about the double copy can be found in [9].

Apart from scattering amplitudes, which involve on-
shell asymptotic states only, gauge invariant local op-
erators also play important roles in gauge theories and
it is natural to ask: does a consistent double copy pic-
ture exist for physical quantities involving local opera-
tors? Nevertheless, the answer is not obvious at all, since
for example, local operators in gravity would break the
di↵eomorphism invariance.

In this paper, we make a concrete step towards ad-
dressing this question, by realizing both BCJ and KLT
double copy for the form factors [10–12]. Form factors
are defined as matrix elements between a gauge invari-
ant operator O and n on-shell states (see [13] for a recent
introduction and review),

FO,n =

Z
d
D
xe

�iq·x
h1 2 . . . n|O(x)|0i , (1)

where q =
P

n

i=1 pi is the o↵-shell momentum associated
with the operator. We find that in realizing the dou-
ble copy, the inclusion of gauge invariant local operators
indeed leads to intriguing new features.

One novel feature is that special spurious poles ap-
pear in the construction of CK-dual numerators in gauge-
theory form factors, and after double copy they become
new physical propagators in the gravity quantities, i.e.

spurious poles
double-copy
��������! physical propagators.

Besides, the factorization on the new propagators in grav-
ity implies that the gauge-theory form factors satisfy hid-
den relations when evaluated on the spurious poles, which
can be schematically shown as

~v · ~Fn

��
spurious pole

= Fm ⇥An+2�m, (2)

and may be understood as a generalization of BCJ rela-
tions [5] for form factors.
Below we explain these properties in detail with ex-

amples of tree-level form factors with O = tr(�2) in the
scalar-Yang-Mills theory. Similar discussions also apply
to form factors of other operators, such as  ̄ in QCD, of
which the form factors are equivalent to a class of Higgs
plus quarks and gluons amplitudes. This provides for the
first time a double copy for amplitudes involving a color
singlet particle. We will discuss more on this in the last
section.

INVITATION: A THREE-POINT EXAMPLE

Most new features of the form-factor double copy can be
illustrated by considering a simple example: the three-
point tree-level form factor F tr(�2),3(1

�
, 2�, 3g). In this

example, there are two cubic Feynman diagrams �a,b as
given in Figure 1, and the full-color form factor can be
written as

F 3(1
�
, 2�, 3g) =

CaNa("3, {pi})

s13
+

CbNb("3, {pi})

s23
, (3)
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Example: 3-point form factor
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Figure 1. Feynman diagrams for the three-point form factor in gauge theory. The blue double line
with arrow represents operator insertion. The black straight line and spring line are (light) scalars
and gluons respectively.

3 Double copy for form factors in scalar-Yang-Mills theory

In this section, we consider the double-copy of form factors in the scalar-Yang-Mills theory:

L
sYM “ trpFµ⌫F

µ⌫q ` trpDµ
�Dµ�q (3.1)

The gauge field Aµ “ A
a
µT

a and the scalar � “ �
a
T
a are both in the adjoint representation,

where T
a are the generators of gauge group satisfying rT a

, T
bs “ if

abc
T
c. The covariant

derivative acts as Dµ ¨ “ Bµ ¨ `igrAµ, ¨ s, and rDµ, D⌫s ¨ “ igrFµ⌫ , ¨ s. We focus on the form

factor of the operator trp�2q:

Fnp1�, 2�, 3g, . . . , ngq “
ª
d
D
x e

´iq¨xx�pp1q�pp2q gpp3q . . . gppnq|trp�2qpxq|0y . (3.2)

The two-point minimal form factor is proportional to a delta function in the color space:

F 2p1�, 2�q “ �
a1a2 , (3.3)

which has a trivial kinematic part equal to one, and one can make a double-copy directly.

Thus the first interesting case is the three-point case.

3.1 Three-point form factors

We first consider the three-point form factor. At tree-level, there two cubic Feynman diagrams

�1,2 as shown in Figure 1. The form factor can be obtained as

F 3p1�, 2�, 3gq “ C1N1

s23
` C2N2

s13
, (3.4)

where the color factors are

C1 “ C2 “ f
a1a2a3 , (3.5)

and kinematic numerator factors from Feynman diagrams are

N
Feyn

1
“ ´"3 ¨ p2 , N

Feyn

2
“ "3 ¨ p1 . (3.6)

One can also obtain the color-ordered form factor (associated with color factor trpT a1T
a3T

a2q):

F3p1�, 3g, 2�q “ ´"3 ¨ p2
s23

` "3 ¨ p1
s13

4-dimùùùñ
"`
3

x21y
x13yx32y , (3.7)
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Figure 1. Feynman diagrams for the three-point form factor in gauge theory. The blue double line
with arrow represents operator insertion. The black straight line and spring line are (light) scalars
and gluons respectively.
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a are both in the adjoint representation,

where T
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c. The covariant
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factor of the operator trp�2q:
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The two-point minimal form factor is proportional to a delta function in the color space:

F 2p1�, 2�q “ �
a1a2 , (3.3)

which has a trivial kinematic part equal to one, and one can make a double-copy directly.

Thus the first interesting case is the three-point case.

3.1 Three-point form factors

We first consider the three-point form factor. At tree-level, there two cubic Feynman diagrams

�1,2 as shown in Figure 1. The form factor can be obtained as

F 3p1�, 2�, 3gq “ C1N1

s23
` C2N2

s13
, (3.4)

where the color factors are

C1 “ C2 “ f
a1a2a3 , (3.5)

and kinematic numerator factors from Feynman diagrams are
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2
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One can also obtain the color-ordered form factor (associated with color factor trpT a1T
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s23
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s13

4-dimùùùñ
"`
3

x21y
x13yx32y , (3.7)
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sYM “ trpFµ⌫F
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The gauge field Aµ “ A
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a and the scalar � “ �
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T
a are both in the adjoint representation,

where T
a are the generators of gauge group satisfying rT a

, T
bs “ if

abc
T
c. The covariant

derivative acts as Dµ ¨ “ Bµ ¨ `igrAµ, ¨ s, and rDµ, D⌫s ¨ “ igrFµ⌫ , ¨ s. We focus on the form

factor of the operator trp�2q:

Fnp1�, 2�, 3g, . . . , ngq “
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´iq¨xx�pp1q�pp2q gpp3q . . . gppnq|trp�2qpxq|0y . (3.2)

The two-point minimal form factor is proportional to a delta function in the color space:

F 2p1�, 2�q “ �
a1a2 , (3.3)

which has a trivial kinematic part equal to one, and one can make a double-copy directly.

Thus the first interesting case is the three-point case.

3.1 Three-point form factors

We first consider the three-point form factor. At tree-level, there two cubic Feynman diagrams

�1,2 as shown in Figure 1. The form factor can be obtained as

F 3p1�, 2�, 3gq “ C1N1

s23
` C2N2

s13
, (3.4)

where the color factors are

C1 “ C2 “ f
a1a2a3 , (3.5)

and kinematic numerator factors from Feynman diagrams are

N
Feyn

1
“ ´"3 ¨ p2 , N

Feyn

2
“ "3 ¨ p1 . (3.6)

One can also obtain the color-ordered form factor (associated with color factor trpT a1T
a3T

a2q):

F3p1�, 3g, 2�q “ ´"3 ¨ p2
s23

` "3 ¨ p1
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4-dimùùùñ
"`
3

x21y
x13yx32y , (3.7)
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where in the second equation we express the result in spinor helicity form in four dimensions.

A well-defined quantity in gravity should preserve the di↵eomorphism invariance, in other

words, it should be invariant under a transformation of graviton polarization tensor: "
µ⌫

3
Ñ

"
µ⌫

3
` p

pµ
3
⇠
⌫q. Here "

µ⌫

3
“ "

pµ
3
"
⌫q
3

with the brackets indicating the symmetric-traceless part,

and ⇠
⌫ is a reference vector satisfying ⇠ ¨ p3 “ 0. However, a naive double-copy of (3.4),

G
naive

3 “ p"3 ¨ p2q2
s23

` p"3 ¨ p1q2
s13

“ "
µ⌫

3
p2µp2⌫

s23
` "

µ⌫

3
p1µp1⌫

s13
, (3.8)

obviously breaks the di↵eomorphism invariance.

To solve this problem, the well-known solution is to impose the color-kinematics duality.

For scattering amplitudes in CK-dual representations, the di↵eomorphism invariance of the

double copy is ensured because kinematics numerator satisfy the same Jacobi relations as

color factors. Here for form factors, the color factors satisfy a di↵erent type of color relations,

coming from the color structure of local operators, and it is understandable that di↵eomor-

phism require the numerators satisfy similar relations. In this example, one needs to require

that

C1 “ C2 ñ N
CK
1 “ N

CK
2 . (3.9)

Given this requirement, the form factor can be written as

F 3p1�, 2�, 3gq “
´ 1

s23
` 1

s13

¯
C1N

CK
1 “ C1F3p1�, 3g, 2�q , (3.10)

where in the second equation we apply the color decomposition and F3 is the color-ordered

three-point form factor given in (3.7). Thus one finds CK-dual numerator solution as:

N
CK
1 “ N

CK
2 “ s13s23

s13 ` s23
F3p1�, 3g, 2�q . (3.11)

We stress that the numerators are uniquely determined and are also manifestly gauge invari-

ant.

When applying the double copy for (3.11), giving

G3 “ pNCK
1

q2
s23

` pNCK
2

q2
s13

“ s13s23

s13 ` s23

´
F3p1�, 3g, 2�q

¯
2

. (3.12)

The gauge invariance of the numerators immediately implies the di↵eomorphism invariance

of G3.

However, it seems to be disappointing that the numerator solutions (3.11) have a spurious

poles, and the spurious pole will not disappear in G3.

It is interesting that the s13 ` s23 “ q
2 ´ s12 is a simple pole, which looks like a Feynman

propagator, and the residue on this pole is

Res rG3s
s12“q2

“ p✏3 ¨ qq2 “
`
F2p1�, 2�q

˘
2 ˆ pA3pqS

2 , 3
g
,´q

Sqq2 , (3.13)

where F2p1�, 2�q “ 1 is the minimal form factor of trp�2q and

A3pqS

2 , 3
g
,´q

Sq “ ✏3 ¨ q , with q2 “ p1 ` p2, (3.14)
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where in the second equation we express the result in spinor helicity form in four dimensions.
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“ "

pµ
3
"
⌫q
3

with the brackets indicating the symmetric-traceless part,

and ⇠
⌫ is a reference vector satisfying ⇠ ¨ p3 “ 0. However, a naive double-copy of (3.4),

G
naive

3 “ p"3 ¨ p2q2
s23

` p"3 ¨ p1q2
s13

“ "
µ⌫

3
p2µp2⌫

s23
` "

µ⌫

3
p1µp1⌫

s13
, (3.8)

obviously breaks the di↵eomorphism invariance.

To solve this problem, the well-known solution is to impose the color-kinematics duality.

For scattering amplitudes in CK-dual representations, the di↵eomorphism invariance of the

double copy is ensured because kinematics numerator satisfy the same Jacobi relations as

color factors. Here for form factors, the color factors satisfy a di↵erent type of color relations,

coming from the color structure of local operators, and it is understandable that di↵eomor-

phism require the numerators satisfy similar relations. In this example, one needs to require

that

C1 “ C2 ñ N
CK
1 “ N

CK
2 . (3.9)

Given this requirement, the form factor can be written as

F 3p1�, 2�, 3gq “
´ 1

s23
` 1

s13

¯
C1N

CK
1 “ C1F3p1�, 3g, 2�q , (3.10)

where in the second equation we apply the color decomposition and F3 is the color-ordered

three-point form factor given in (3.7). Thus one finds CK-dual numerator solution as:

N
CK
1 “ N

CK
2 “ s13s23

s13 ` s23
F3p1�, 3g, 2�q . (3.11)

We stress that the numerators are uniquely determined and are also manifestly gauge invari-

ant.

When applying the double copy for (3.11), giving

G3 “ pNCK
1

q2
s23

` pNCK
2

q2
s13

“ s13s23

s13 ` s23

´
F3p1�, 3g, 2�q

¯
2

. (3.12)

The gauge invariance of the numerators immediately implies the di↵eomorphism invariance

of G3.

However, it seems to be disappointing that the numerator solutions (3.11) have a spurious

poles, and the spurious pole will not disappear in G3.

It is interesting that the s13 ` s23 “ q
2 ´ s12 is a simple pole, which looks like a Feynman

propagator, and the residue on this pole is

Res rG3s
s12“q2

“ p✏3 ¨ qq2 “
`
F2p1�, 2�q

˘
2 ˆ pA3pqS

2 , 3
g
,´q

Sqq2 , (3.13)

where F2p1�, 2�q “ 1 is the minimal form factor of trp�2q and

A3pqS

2 , 3
g
,´q

Sq “ ✏3 ¨ q , with q2 “ p1 ` p2, (3.14)
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F3 = ∫ d4x e−iq⋅x⟨pϕ
1 , pϕ

2 , pg
3 | tr(ϕ2)(x) |0⟩

Manifestly diffeomorphism invariant

Unique solution with a spurious pole



Ansatz of the form factors
Our result provides a first two-loop five-point example with a 
color-singlet off-shell leg.

ℱ𝒪,4 = ∫ d4x e−iq⋅x⟨1,2,3,4 |𝒪(x) |0⟩

i
j

k

l

{s12, s23, s34, s14, s13, s24, tr5}; tr5 = 4iεp1p2 p3p4

H



Physical constraints

IR divergences

Collinear factorization

The maximally transcendental parts of IR divergences and 
collinear splitting factors are universal for general gauge theories.

at integral level in a simple way. This problem can be solved by the fact that the IR
divergences only depend on the on-shell external particles, which are universal and well
understood.11

To be concrete, for a renormalized planar form factor F ren
OI

=
P

J(I
ren) J

I F
(0)
OJ

, its IR
divergences take the universal form (which is the same as for planar amplitudes [26]):

log Iren = �

1X

l=1

g
2l


�
(l)
cusp

(2l✏)2
+

G
(l)
coll

2l✏

� nX

i=1

(�sii+1)
�l✏

· 1+O(✏0) . (134)

The identity matrix 1 = �
J

I implies that there is no mixing of IR divergences between
di↵erent operators. At two-loop order, it is convenient to use the following form [26]:

(log Iren)(2) = I
(2),ren

�
1

2

�
I
(1),ren(✏)

�2
= f

(2)(✏)I(1),ren(2✏) +R
(2) +O(✏) , (135)

where
f
(2)(✏) = �2⇣2 � 2⇣3✏� 2⇣4✏

2
, (136)

and the finite part R
(2) is usually called the remainder function. One can check that

(135) is consistent with (134) using the cusp and collinear anomalous dimensions given in
(98)-(99).

Therefore, by subtracting the universal IR divergences, one can compute the UV
divergences unambiguously. Below we provide some further details in the SL(2) sector [72].
For the simplicity of notation, we will denote the bare and renormalized loop corrections
as

I
(l),bare := I

(l)
, I

(l),ren := I
(l)
. (137)

SL(2) two-loop case

In the first step, one needs to obtain bare form factors. As in the one-loop case, we
only need to consider density form factors. The two-loop correction contains interactions
involving both two fields (range-2 interaction) and three fields (range-3 interactions). We
denote the corresponding two-loop density corrections as

F
(2)
On1n2

(pi, pi+1) =
X

m1,m2

(I(2)i )m1,m2
n1,n2

· F
(0)
Om1m2

(pi, pi+1) , (138)

F
(2)
On1n2n3

(pi, pi+1, pi+2) =
X

m1,m2,m3

(I(2)i )m1,m2,m3
n1,n2,n3

· F
(0)
Om1m2m3

(pi, pi+1, pi+2) , (139)

where the first line is the range-2 contribution and the second line is range-3 part. The
notation we use is similar to the one-loop case in (128). The loop corrections (I(2)i )m1,m2

n1,n2

and (I(2)i )m1,m2,m3
n1,n2,n3

can be computed by unitarity cut methods. We will not go into details
of this computation but refer interested reader to [72] for the results.

11The IR divergences can be also computed using BPS operators whose form factors are UV free.
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Besides, the physical properties (mentioned below) are not manifest in such a computation

but only provide consistency checks for the final results.

The bootstrap strategy takes a very di↵erent route: the final form of the result such

as (2.1) is taken as the starting ansatz, and the physical consistency conditions are used at

the very beginning of the computation, namely, they are used as constraints to solve the

coe�cients in the ansatz. In this way, the physical properties are manifest in each step, and

this often leads to a result in a compact form.

In Section 2.1 we first briefly discuss various physical properties that will be used as

constraints in later computations, then we will provide some details about the collinear limit

of form factors in Section 2.2.

2.1 Physical constraints

The constraints are from the general properties of physical quantities, including: (1) the loop

quantity should reproduce the general infrared (IR) divergences, (2) it should satisfy the

collinear factorization property, (3) the spurious poles must cancel in the full result, and (4)

it should satisfy unitarity cuts or other possible constraints. Below we discuss them in more

detail.

IR divergences. Amplitudes and form factors with massless external states have IR diver-

gences, which have universal structures and are related to the number and types of external

massless particles. In the planar limit, for example, IR divergences are captured by the two-

point Sudakov form factors [32–35], which are determined by two kinematics-independent

nubmers: the cusp anomalous dimension �cusp [36, 37] and the collinear anomalous dimension

Gcoll (see e.g. [18]). For amplitudes or form factors with multiple external legs, IR divergences

for general massless gauge theories can be conveniently taken into account by the Catani for-

mula [38]. Since our main focus is on the maximally transcendental parts, it is convenient to

use the Bern-Dixon-Smirnov (BDS) ansatz [39, 40] which also captures the collinear behavior,

as will be explained shortly below. Some details of the Catani formula and its relation to the

BDS form are given in Appendix B.

Collinear limits. When two external legs are taken in the collinear limit, the form factors

satisfy factorization formula as (see e.g. [41]):

F (L)

n (1, . . . , aha , bhb , . . . , n)
pa||pb���!

X

`

X

�

Sp
(`)

��
(aha , bhb)F (L�`)

n�1
(1, . . . , (a+ b)�, . . . , n) . (2.2)

For example, in the linear limit pa || pb ||P = pa + pb

pa ! zP, pb ! (1� z)P , (2.3)

the one-loop splitting amplitude Sp
(1) can be given as [42–44]

Sp
(1)(P ! a b; z) = Sp

(0)(P ! a b; z) r[1],MT

1
(P 2, z) + (lower transendental part) , (2.4)
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but only provide consistency checks for the final results.

The bootstrap strategy takes a very di↵erent route: the final form of the result such

as (2.1) is taken as the starting ansatz, and the physical consistency conditions are used at

the very beginning of the computation, namely, they are used as constraints to solve the

coe�cients in the ansatz. In this way, the physical properties are manifest in each step, and

this often leads to a result in a compact form.

In Section 2.1 we first briefly discuss various physical properties that will be used as

constraints in later computations, then we will provide some details about the collinear limit

of form factors in Section 2.2.

2.1 Physical constraints

The constraints are from the general properties of physical quantities, including: (1) the loop

quantity should reproduce the general infrared (IR) divergences, (2) it should satisfy the

collinear factorization property, (3) the spurious poles must cancel in the full result, and (4)

it should satisfy unitarity cuts or other possible constraints. Below we discuss them in more

detail.

IR divergences. Amplitudes and form factors with massless external states have IR diver-

gences, which have universal structures and are related to the number and types of external

massless particles. In the planar limit, for example, IR divergences are captured by the two-

point Sudakov form factors [32–35], which are determined by two kinematics-independent

nubmers: the cusp anomalous dimension �cusp [36, 37] and the collinear anomalous dimension

Gcoll (see e.g. [18]). For amplitudes or form factors with multiple external legs, IR divergences

for general massless gauge theories can be conveniently taken into account by the Catani for-

mula [38]. Since our main focus is on the maximally transcendental parts, it is convenient to

use the Bern-Dixon-Smirnov (BDS) ansatz [39, 40] which also captures the collinear behavior,

as will be explained shortly below. Some details of the Catani formula and its relation to the

BDS form are given in Appendix B.

Collinear limits. When two external legs are taken in the collinear limit, the form factors

satisfy factorization formula as (see e.g. [41]):

F (L)

n (1, . . . , aha , bhb , . . . , n)
pa||pb���!

X

`

X

�

Sp
(`)

��
(aha , bhb)F (L�`)

n�1
(1, . . . , (a+ b)�, . . . , n) . (2.2)

For example, in the linear limit pa || pb ||P = pa + pb

pa ! zP, pb ! (1� z)P , (2.3)

the one-loop splitting amplitude Sp
(1) can be given as [42–44]

Sp
(1)(P ! a b; z) = Sp

(0)(P ! a b; z) r[1],MT

1
(P 2, z) + (lower transendental part) , (2.4)
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where the maximally transcendental part of the one-loop splitting function (denoted by the

superscript ‘MT’) is

r[1],MT

1
(P 2, z) =

e✏�E�(�✏)2�(✏+ 1)

�(1� 2✏)
(�P 2)�✏

n
1�z�✏�(1� z)�✏+✏2

⇥
log(z) log(1�z)�⇣2

⇤
+O(✏3)

o
.

(2.5)

We stress that (2.5) is universal for general gauge theories, and this formula will be used to

bootstrap the one-loop three- and four-point form factors in Section 4.1.1 and Section 5.2.

Beyond one-loop order, there is a convenient way to capture both the IR and collinear

behavior by using the BDS ansatz [39] for N = 4 SYM (or the maximally transcendental

parts in general gauge theories, see more discussion in Appendix B). The loop correction at

two loops can be given as

I(2) =
1

2

⇣
I(1)(✏)

⌘
2

+ f (2)(✏)I(1)(2✏) +R(2) +O(✏) , (2.6)

where

f (2)(✏) = �2⇣2 � 2⇣3✏� 2⇣4✏
2 . (2.7)

The original two-loop BDS ansatz is proposed with only the first two terms in (2.6) [39, 40]:

I(2),BDS =
1

2

⇣
I(1)(✏)

⌘
2

+ f (2)(✏)I(1)(2✏) , (2.8)

which were constructed in a way that they capture all the IR divergences and also have correct

collinear behavior of amplitudes. This original ansatz is correct for the four- and five-point

amplitudes in N = 4 SYM, but for higher-point amplitudes an extra finite remainder function

is needed [45, 46], denoted as R(2) in (2.6). The same BDS-ansatz structure also generalizes

to form factors [5, 47]. Since the remainder function is free from both IR and collinear

singularities, it has the important property that the n-point remainder reduces trivially to

(n� 1)-point remainder in the collinear limit as

R(2)

n

pi k pi+1�������! R(2)

n�1
. (2.9)

This will provide useful constraints for the two-loop three- and four-point form factors in

Section 4 and Section 5.

Spurious pole cancellation. For form factors with non-trivial spinor structures (such as

the four-point form factors considered later), the coe�cients of master integrals can contain

spurious poles (i.e. unphysical poles). The cancellation of spurious poles typically requires a

combination of both the spinor factors and the master integrals, which can provide non-trivial

constraints on the coe�cients of master integrals. The details of the spurious poles as well

as applying their cancellation as constraints will be given in Section 5 for the discussion of

four-point form factors.
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Three-point next-to-mini form factor

H
g

g

g

IR & collinear constraints are enough to fix 3-gluon results.

This is a next-to-minimal form factor, and whose collinear limits will provide new important

constraints. Moreover, this form factor is equivalent to the Higgs-plus-three-parton ampli-

tudes in the heavy top mass limit by integrating out the heavy top quark [23–27, 78, 79].

The full two-loop QCD corrections were obtained in [6], and the result in N = 4 SYM was

obtained in [5]. It turns out that the maximally transcendental parts of the results in QCD

and N = 4 SYM satisfy [5, 12]:

F (L),N=4

L⇠tr(F 2)
(1, 2, 3) = F (L),QCD

tr(F 2),M.T.
(1g, 2g, 3g) = F (L),QCD

tr(F 2),M.T.
(1q, 2q̄, 3g)

���
CF!CA

, (4.2)

for L = 1, 2. One main goal of this section is to provide a proof for the relation (4.2). Here

in N = 4 SYM theory, L is the chiral Lagrangian which contains tr(F 2) as a component,

see e.g. [80, 81].7 For our discussion of the maximally transcendental part, it is enough

to focus on tr(F 2) since other components in the supermultiplet have only contribution of

lower transcendentality. Since the field strength operator can be decomposed as self-dual and

anti-self-dual parts as

tr(Fµ⌫F
µ⌫) =

1

2

⇥
tr(F↵�F

↵�) + tr(F̄
↵̇�̇

F̄ ↵̇�̇)
⇤
, (4.3)

for simplicity (and without loss of generality), in the following discussion we will take the

operator as the self-dual part O2 = tr(F↵�F↵�). The minimal two-point tree-level form

factors is F (0)

O2
(1�, 2�) = h12i2.

As a brief outline, in Section 4.1, we will show that the constraints from IR together with

collinear limits can fix the form factor in N = 4 up to the two-loop order. In Section 4.2, we

consider further the form factors in QCD, and together with the use of unitarity cuts for the

F (l),QCD

tr(F 2)
(1q, 2q̄, 3g) case, then the relations (4.2) can be proven.

4.1 Bootstrapping the N = 4 form factor

As a warm-up, we consider the form factors of stress-tensor supermultiplet in N = 4 super-

Yang-Mills theory, which are uniformly transcendental with weight 2L at L loops. The loop

correction I(L)

O2,3
can be defined by factorizing out the tree-level form factor from the loop-level

as

F (L)

O2,3
(1, 2, 3) = F (0)

O2,3
I(L)

O2,3
(1, 2, 3) . (4.4)

and I(L)

O2,3
are functions depending on three Mandelstam variables {s12, s23, s13}.

4.1.1 One-loop case

At one loop, I(1)

O2,3
can be expanded in terms of 7 master integrals as

I(1)

O2,3
=c1I

(1)

Bub
(1, 2) + c2I

(1)

Bub
(2, 3) + c3I

(1)

Bub
(1, 3) + c4I

(1)

Bub
(1, 2, 3)

7The chiral Lagrangian belongs also to the larger stress-tensor supermultiplet which is half-BPS. We mention

that the same maximally transcendental function was also found in the two-loop three-point form factor of

the non-BPS Konishi operator in N = 4 SYM [82].
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There is no fermion or scalar contribution, so the result is also 
the same as in the pure YM theory.

External particles (1�, 2�, 3�) (1�, 2�, 3+) (1q, 2q̄, 3�)

Constraints Remaining parameters

Starting ansatz 89 89 89

Symmetry 24 53 89

IR 11 21 48

Collinear limit 1 5 21

Color factor 0 2 21

Smooth light-like limit of q 0 0 11

Table 3: Bootstrap for two-loop form factors of tr(F 2).

1

2

3

Figure 8: A unitarity cut for the one-loop form factor F (1)(1q, 2q̄, 3�).

2
3

1

Figure 9: The QCD Feynman diagram that contributes to the fifth topology in Figure 7.

Unitarity-cut for the (1q, 2q̄, 3�) case. Below we would like to show that the QCD result

is equivalent to the N = 4 result for (1q, 2q̄, 3�) case by converting QCD quarks from the

fundamental to the adjoint representation. Note that due to supersymmetry, the N = 4 SYM

result is the same for all possible choices of external states, this is then enough to prove (4.2).

To determine this remaining parameter at one loop, one can use the unitarity cut shown

in Figure 8. Actually, there is no need to perform this computation, since this cut is the same

for N = 4 SYM and QCD if one changes the quadratic Casimir CF ! CA in QCD. Thus we

prove the relations in (4.2) at one loop.

The two-loop case is less trivial. We first recall that the fifth topology in Figure 7 has

zero color factors for adjoint particles, therefore, when we convert quarks to be adjoint, the

non-planar master integrals I(2)
NTBox1

, I(2)
NTBox2a

and I(2)
NTBox2b

can not contribute. The related

Feynman diagram contribution in QCD is shown in Figure 9. Its color factor can be computed

as

t2F (CA � CF )(CA � 2CF )(T
a3) j̄2

i1
, (4.23)

which indeed vanishes when taking CF ! CA. In this way, one can eliminate 6 parameters

that are relate to these non-planar master integrals.
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Physical constraints

Unitarity cut

There are universal cuts that involve only gluon states and thus are 
also universal for general gauge theories.

i

j k

l

(a)

�

� +

+

�

�

+

+

i�

j

k

l

(b)

�

� +

+

�

�

+

+

4+

3�

1�

2�

(c)

4+

�+ � +

�

� +

+

1�

2�

3�

(d)

Figure 14: The unitarity cuts which are same for general gauge theories.

To be concrete, we consider four types of unitarity cuts shown in Figure 14. These cuts are

special in the sense that they can only allow internal gluon configuration, therefore, the

coe�cients of the master integrals which can be detected by these cuts must be the same for

any gauge theory that contains a Yang-Mills sector. The master integrals detected by these

cuts are listed below:

cut-(a) : I(2)
dBox2a

, I(2)
dBox2b

, I(2)
dBox2c

, I(2)
BPa

, I(2)
BPb

, I(2)
TP

for all orderings of external particles.

cut-(b) : I(2)
BubBox0

for all orderings of external particles.

cut-(c) : I(2)
dBub

(1, 2; 1, 2, 4), I(2)
TT0

(4, 1, 2), I(2)
TBox0

(2, 3, 4).

cut-(d) : I(2)
TT1a

(4, 1, 2), I(2)
dBox1a

(2, 3, 4), I(2)
TBox0

(4, 1, 2).

Since these master integrals are determined by the pure YM theory, they cannot occur

in �(2)

M.T.
. By inspecting their relation with the remaining building blocks in (5.39), we find

that �(2)

M.T.
only depends on two functions of G̃3,� and can be given as

�(2)

M.T.
= B4

⇣
x1G̃

(2)

3,1
+ x2G̃

(2)

3,3

⌘
+ (p1 $ p3) . (5.55)

The two free parameters x1,2 can be fixed by the coe�cients of I(2)
TBox0

(1, 4, 3) and I(2)
dBox1a

(1, 4, 3),

which have coe�cients B5(�3

4
x1 + x2) and 1

4
B5x1 respectively in the above formula. Since

they are free from µ-terms, it is enough to apply a four-dimensional unitarity cut to fix them.

5.4.2 Two-loop result of N = 4 SYM

Now we can consider the form factor result in N = 4 super Yang-Mills. Since we have already

obtained the pure YM result, it will be enough to compute �(2),N=4

M.T.
given in (5.55). As we

discussed before, we will consider a four-dimensional cut as in Figure 13 with the ordering of

external particles chosen as (ijkl) = (2341), which is given in Figure 15. This cut can fix the

coe�cients of I(2)
TBox0

(1, 4, 3) and I(2)
dBox1a

(1, 4, 3).
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A counterexample of MTP

One-loop four-gluon amplitudes do not obey MTP:

A(1),M.T.
4,YM

(1−,2+,3−,4+) |fin ≠ A(1)
4,𝒩=4

|fin

A(1),M.T.
4,YM

(1−,2+,3−,4+) |IR = A(1)
4,𝒩=4

|IR

A(1)
4,𝒩=4

= A(1)
4,gluon

+ A(1)
4,fermion

+ A(1)
4,scalar



Four-point next-to-mini form factor

Bootstrap for the next-to-minimal four-point form factor in pure YM

Constraints Parameters left

Starting ansatz 1105

Symmetry of (p1 $ p3) 560

IR (Symbol) 207

Collinear limit (Symbol) 119

Spurious pole (Symbol) 53

IR (Function) 40

Collinear limit (Funcion) 24

Spurious pole (Funcion) 20

Simple unitarity cuts 0

Table 5: Solving for parameters via constraints.

numerics will be discussed in Appendix F, and here we focus on the solution to the constraints.

By repeating the above steps at the function level, the remaining degrees of freedom can be

reduced to 40 (by IR), 24 (by collinear limits), and 20 (by the cancellation of spurious poles).12

We summarize the constraints and corresponding fixed parameters in Table 5. We point

out that two of 20 degrees of freedom only change results at O(✏) order which will be explained

in the next subsection. All remaining parameters can be fixed by simple unitarity cuts as

discussed later in Section 5.3.3.

5.3.2 Building blocks for the remaining parameters

Before applying further unitarity-cut constraints, it is instructive to first analyze the remain-

ing degrees of freedom.

The terms depending on the remaining free parameters can be organized into three

groups:

(B1 +B2) G̃
(2)

1,↵
, ↵ = 1, . . . , 8 , (5.39)

B3G̃
(2)

2,�
, � = 1, . . . , 7 ,

B4G̃
(2)

3,�
+ (p1 $ p3) , � = 1, . . . , 5 ,

where G̃(2)

1,↵
are

G̃(2)

1,1
= I(2)

dBox2c
(1, 2, 3, 4) + I(2)

dBox2c
(3, 2, 1, 4) , G̃(2)

1,2
= G̃(2)

1,1
|(p2$p4)

,

G̃1,3 = I(2)
BPb

(1, 2, 3, 4)� I(2)
BPb

(4, 3, 2, 1) + (p1 $ p3) , G̃(2)

1,4
= G̃(2)

1,3
|(p2$p4)

,

G̃1,5 = I(2)
TP

(1, 2, 3, 4) + I(2)
TP

(3, 2, 1, 4) ,

G̃(2)

1,6
= G̃1,5|(pi!pi+1)

, G̃(2)

1,7
= G̃1,5|(pi!pi+2)

, G̃(2)

1,8
= G̃1,5|(pi!pi+3)

, (5.40)

12We mention that the numerical collinear limit can be taken with the parameterization (5.16).
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5 Two-loop four-point form factor of tr(F 3)

In this section, we consider further two-loop four-point form factor of length-three operators:

FO3,4 =

Z
dDxe�iq·xhp1 p2 p3 p4|O3(x)|0i .

The case of tr(�3) form factor has been obtained by bootstrapping recently in [28]. In this

paper we will compute a similar form factor which contains a length-three operator tr(F 3)

and four external on-shell gluon states, defined concretely as

Ftr(F 3),4 :=Ftr(F 3),4(1
�, 2�, 3�, 4+; q) (5.1)

=

Z
dDxe�iq·xhg�(p1)g�(p2)g�(p3)g+(p4)|tr(F 3)(x)|0i .

As in the previous three-point form factor, this form factor can be understood as the Higgs-

plus-four-gluon scattering amplitudes in the Higgs EFT with a dimension-six operator. Unlike

tr(�3), the operator tr(F 3) is non-BPS in N = 4 SYM, thus the form factor also receives

contribution from lower transcendental parts in N = 4 SYM. In this paper, we will focus on

the maximal transcendental part. We will first consider the form factors in N = 4 SYM and

pure YM, and we apply bootstrap strategy to obtain the maximally transcendental parts up

to two loops in Section 5.1-5.3. Then we will discuss the correspondence between QCD and

N = 4 results in Section 5.4. We finally discuss the connection between form factors of tr(F 3)

and tr(�3) in Section 5.5.

5.1 Ansatz of the form factor up to two loops

We define the maximally transcendental part of the loop corrections I(L),M.T.

tr(F 3),4
as

F (L),M.T.

tr(F 3),4
= F (0)

tr(F 3),4
I(L),M.T.

tr(F 3),4
, (5.2)

in which the tree-level result takes the simple form as

F (0)

tr(F 3),4
=

h12ih23ih31i2
h34ih41i . (5.3)

Our goal is to compute the loop corrections in terms of master integral expansion:

I(L),M.T.

tr(F 3),4
=

X

i

xiI
(L)

i
. (5.4)

Since we choose I(L)
i

as pure UT integrals of transcendentality 2L, the coe�cients xi are

independent of dimensional parameter ✏.

Unlike the discussion in previous sections, there is a major complication for the four-point

form factor studied here, namely, the master coe�cients will have non-trivial dependence on

kinematics factors as xi =
P

a
ci,aBa, where Ba are kinematic factors. We will classify the

possible Ba factors.
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Two-loop case:



MHV tree form factors

MHV structure of form factors: Brandhuber, Spence, Travaglini, GY 2010

Compare with Parke-Taylor formula for amplitudes:

AMHV

n (1+, .., i�, .., j�, .., n+) = �4(
nX

i=1

pi)
hiji4

h12i · · · hn1i

FMHV

n (1+, .., i�, .., j�, .., n
+; tr(�2)) = �4(

nX

i=1

pi � q)
hiji2

h12i · · · hn1i



Form factors at strong coupling

Alday, Maldacena 2007Form factors as string minimal surfaces

T-duality

Y-system formulation Maldacena, Zhiboedov 2010 (for AdS3)

Gao, GY 2013 (for AdS5)Indicate hidden structure

N=4 SYM               Type IIB string theory in
AdS/CFT

AdS5 ⇥ S5


