Recent adventures with amplitudes: gravitons, gluons & Chern-Simons

何颂

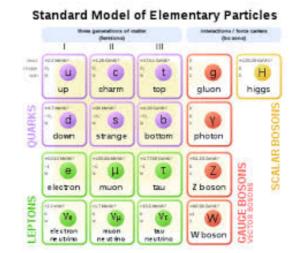
Partly based on works with A. Edison, H. Johansson, O. Schlotterer, 滕飞, 张勇, to appear & with Chia-Kai Kuo, 李振杰, 张耀奇, 2204.08297 + work in progress

第三届全国场论与弦论学术研讨会 北京 Aug 23, 2022

QFT & scattering amplitudes

Theoretical framework to describe Nature: particle physics, condensed matter, cosmology, strings

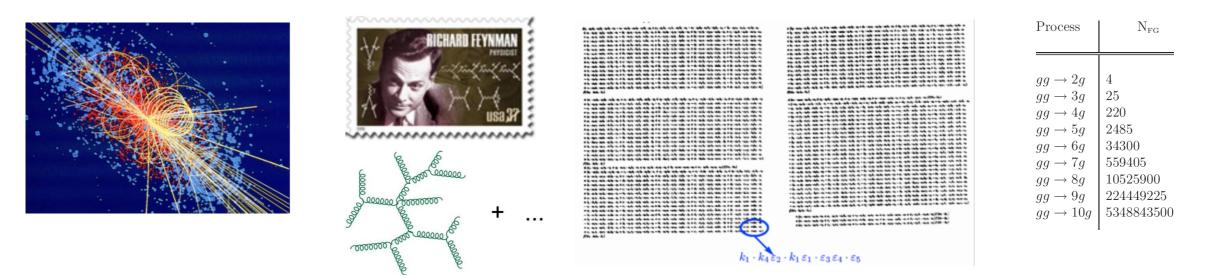
inevitable: consequence of QM & relativity! fundamental interactions unified @ high energy



$g_e^{\rm theory}$	$V = 2.00231930435801\dots$	[2012]
g_e^{expt}	$= 2.002319304361\ldots$	[2011]

incredible accuracy!

 S-matrix: most basic calculation, connects theory to experiment e.g. colliders at high energies need amplitudes of many gluons/quarks



- Fundamental level our understanding of QFT & gravity incomplete: strong coupling, dualities, hidden symmetries, quantum gravity & cosmology...
- simplicity, new structures & relations seen in perturbative scattering amplitudes!

A brief history of amplitudes

"Chinese magic" & Parke-Taylor formula for MHV tree (1986)

Spinor-helicity variables $p^{\mu} = \sigma^{\mu}_{a\dot{a}} \lambda_a \tilde{\lambda}_{\dot{a}}$ $\langle 12 \rangle = \epsilon_{ab} \lambda_a^{(1)} \lambda_b^{(2)}$ $[12] = \epsilon_{\dot{a}\dot{b}} \tilde{\lambda}_{\dot{a}}^{(1)} \tilde{\lambda}_{\dot{b}}^{(2)}$ (Mangano, Parke, Xu 1987)

90's: developing generalized unitarity (w. methods for trees) e.g. tree & one-loop gluon amps in QCD, N=4 SYM & N=8 SG

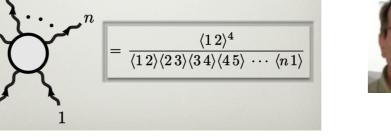
 Twistor strings (2003) ... BCFW recursion: all trees in QCD new unitarity methods → all one-loop QCD & a lot more

→NLO revolution -> NNLO, loop integrands, integrals & polylogs, ...

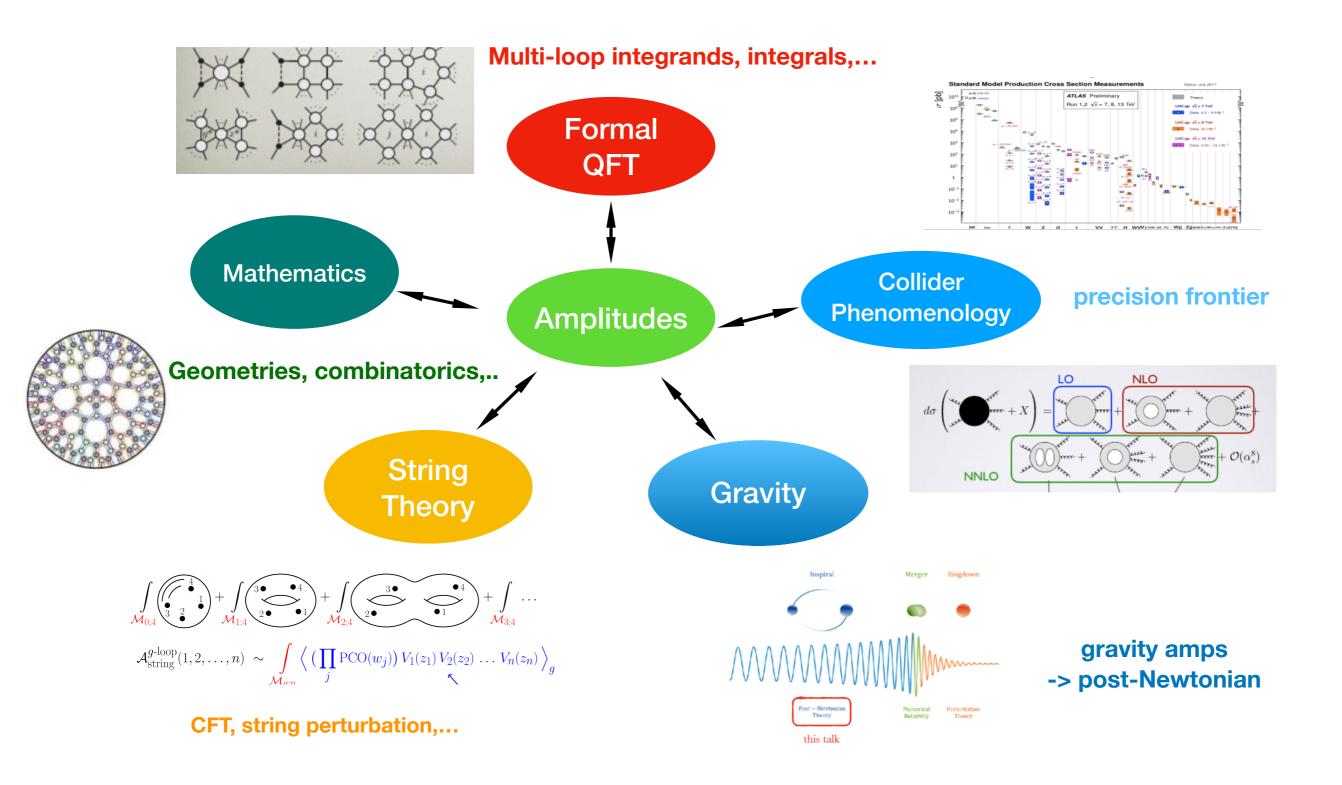
New math structures: Grassmannian for all-loop integrands in N=4 SYM (hydrogen atom of QFT) + bootstrap, integrability, AdS/CFT...

Double copy, gravity & perturbative strings —> e.g. CHY formulation Geometric picture for scattering—> e.g. amplituhedron, associahedron, etc.

(numerous topics & names omitted here...)



Amplitudes today



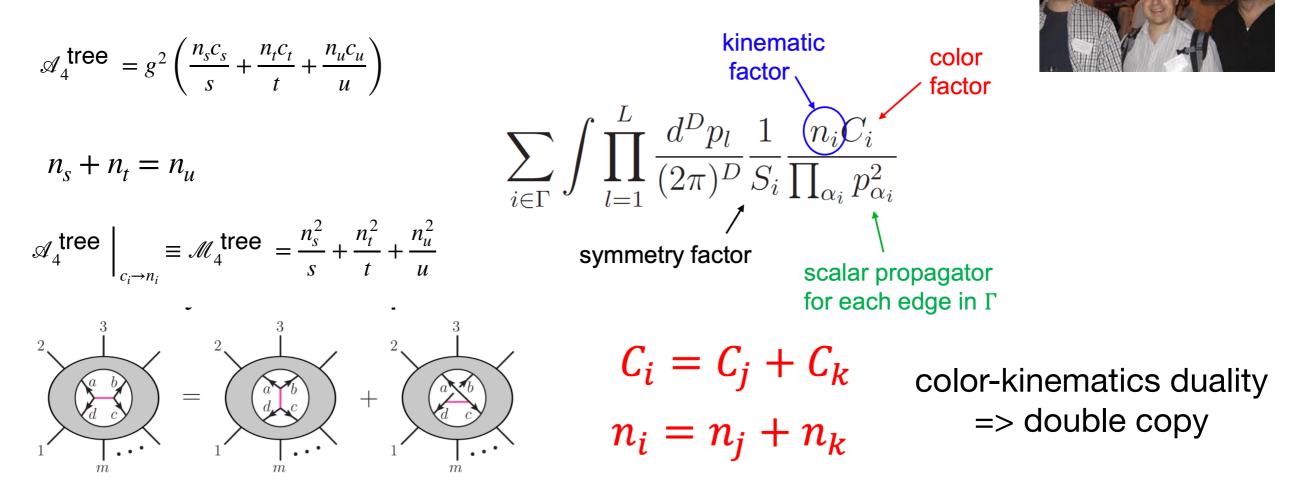
Gravity=(Gauge Theory)^2

1985: Kawai, Lewellen, Tye (KLT): "closed string amp=open-string amp^2"

Field-theory limit:

$$\begin{split} M_4^{\rm tree}(1,2,3,4) &= -i s_{12} A_4^{\rm tree}(1,2,3,4) \, A_4^{\rm tree}(1,2,4,3) \,, \\ M_5^{\rm tree}(1,2,3,4,5) &= i s_{12} s_{34} A_5^{\rm tree}(1,2,3,4,5) A_5^{\rm tree}(2,1,4,3,5) \\ &\quad + i s_{13} s_{24} A_5^{\rm tree}(1,3,2,4,5) \, A_5^{\rm tree}(3,1,4,2,5) \,, \end{split}$$

2008: Bern, Carrasco, Johansson (BCJ): double-copy construction



New formulation of QFT

• CHY formulation: scattering of massless particles in any dim[Cachazo, SH, Yuan 2013]

- compact formulas for amps of gluons, gravitons, scalars, (fermions?!) etc.
- *manifest* gauge (diff) invariance, soft theorems, double-copy & new relations, etc.
- *worldsheet picture*: ambitwsitor strings etc. [Mason, Skinner; Adamo et al; Berkovits; Siegel...]

Scattering equations
$$E_a := \sum_{b=1, b \neq a}^{n} \frac{k_a \cdot k_b}{\sigma_a - \sigma_b} = 0, \quad a = 1, 2, ..., n$$
 $SL(2, \mathbb{C})$ symmetry:

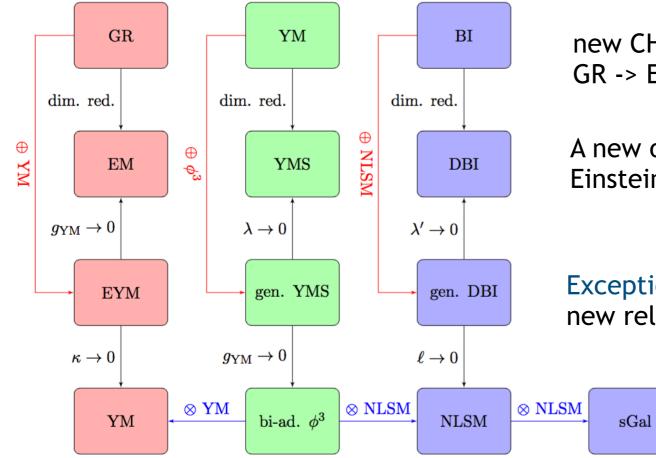
$$M_n = \int \underbrace{\frac{d^n \sigma}{\operatorname{vol} \operatorname{SL}(2, \mathbb{C})}}_{a} \prod_{a}' \delta(E_a) \mathcal{I}(\{k, \epsilon, \sigma\}) = \sum_{\{\sigma\} \in \text{solns.}} \frac{\mathcal{I}(\{k, \epsilon, \sigma\})}{J(\{\sigma\})}$$

• New picture: scattering of massless particles via worldsheet correlators

 $d\mu_n$

• Feynman diagrams, Lagrangians, even spacetime itself become emergent

A landscape of massless theories



new CHY from old ones by e.g. dim reduction GR -> Einstein-Maxwell, YM -> YM-scalar

A new operation as direct sum of two particles -> Einstein-Yang-Mills, Yang-Mills + bi-adjoint scalars

Exceptional EFTs of e.g. pions, DBI, Galileon [CHY 14] [Cheung et al 14] new relations e.g. pions from special dim. red. of gluons!

These amplitudes are strongly constrained (even uniquely determined) by symmetries: gauge invariance & Adler zero; deeply connected to each other!

	Gauge Theories					Effective Field Theories			
Ι	GR (s=2)	YM (s=1)	BI (s=1)		Ι	sGal (au^3)	NLSM (τ^1)	BI (τ^1)	DBI (τ^2)
Ш	YM (s=1)	ϕ^3 (s=0)	NLSM (s=0)	1	Ι	NLSM (τ^1)	$\phi^3 (au^{-1})$	YM (au^{-1})	YMs (τ^0)

Double-copy as direct product

- (Tree-level) double copy explained by CHY: $GR = YM^2/\phi^3$ (inverse of bi-adjoint amps)
- Direct product of amplitudes in two theories: discover new double-copies

Double copies from CHY				
$A \equiv L \otimes R = \int d\mu_n \ I_L \ I_R$	$A = \sum_{\alpha,\beta \in S_{n-1}}$	<i>A</i> _(α) <i>m</i> ⁻	$^{-1}(lpha eta) A_{R}(eta)$)
$A_L(lpha) = \int d\mu_n \ I_L \ PT(lpha)$	L⊗R	L	R	
J	GR	ΥM	YM	
$A_R(\beta) = \int d\mu_n \ I_R \ PT(\beta)$	BI	ΥM	NLSM	
J J	DBI	YMS	NLSM	
$m(lpha eta) = \int d\mu_n PT(lpha) PT(eta)$	sGal	NLSM	NLSM	

- Special cases in D=3,4,6, e.g. D=6 amps for M5/D5 brane & D=3 super-gravity=(ABJM)^2
- a web of relations totally invisible in Feynman diagrams/Lagrangian [Cheung et al] e.g. "Interpolating" between ⊗ and ⊕: expand GR/YM ... amps into EYM/YMS ... [w. Dong, Hou]

Ambitwistor strings & 1-loop CHY+KLT

[Mason, Skinner; Adamo, Casali, Skinner; Geyer, Mason, Monteiro, Tourkine,...]

- (tree) CHY <= 2d chiral CFTs with "ambitwistor" target-space
- higher-genus -> loop CHY but impossible to use; res. theorem: torus -> nodal Riemann spheres

• Equivalently, 1-loop from forward limit of trees: linear propagators [SH, Yuan; Cachazo, SH, Yuan, 15]

$$M^{(1)} = \int \frac{d^d \ell}{\ell^2} \lim_{k_{\pm} \to \pm \ell} \int \underbrace{\prod_{i=2}^n \delta\left(\frac{\ell \cdot k_i}{\sigma_i} + \sum_{j=1, j \neq i}^n \frac{k_i \cdot k_j}{\sigma_{ij}}\right)}_{d\mu_{n+2}} \hat{I}(\ell)$$

- Derive one-loop KLT-like formula for gravity integrand as double copy of gauge-theory integrands [SH Schlotterer, 17;+ Y. Zhang 18; Edison, SH Schlotterer, Teng 20] higher loops?
- Recombine diagrams with linear propagators -> quadratic ones [B. Feng, SH, Y. Zhang^2, 22]

Cuts & numerators from CHY

- Tree-level numerators extracted from CHY(closed form) [CHY 13; Du, Feng, Teng, ... Edison, Teng,...]; Forward-limit gives maximal cut at 1-loop: only need to fix contact terms!
- For max-SYM (in D=10): famous results for n=4, 5 numerators = box/pentagon cut
- For n>5, n-gon cut from forward limit of tree amps (CHY), e.g. n=6

$$N_{123456} \supset \left\{ \left(\varepsilon_{1} \cdot \ell_{1} \right) \left(\varepsilon_{2} \cdot \ell_{2} \right) t_{8} \left(f_{3}, f_{4}, f_{5}, f_{6} \right) + \text{ perms} \right. \\ \left(\varepsilon_{1} \cdot \ell_{1} \right) t_{8} \left(f_{2}, f_{[3,4]}, f_{5}, f_{6} \right) + \text{ perms} \\ t_{8} \left(f_{1}, f_{[2,3]}, f_{[4,5]}, f_{6} \right) + \text{ perms} \\ t_{8} \left(f_{1}, f_{[2,[3,4]]}, f_{5}, f_{6} \right) + \text{ perms} \\ t_{8} \left(f_{1}, f_{[2,[3,4]]}, f_{5}, f_{6} \right) + \text{ perms} \\ t_{12} \left(f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6} \right) \right\}$$

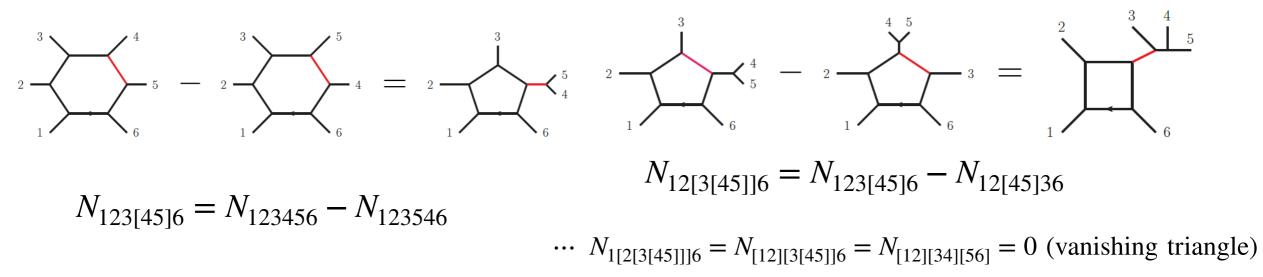
$$t_{8} \left(f_{w}, f_{x}, f_{y}, f_{z} \right) = \text{tr} \left(f_{w} f_{x} f_{y} f_{z} \right) - \frac{1}{4} \text{tr} \left(f_{w} f_{x} \right) \text{tr} \left(f_{y} f_{z} \right) + \text{cyc}(x, y, z)$$

• Indeed contact terms are needed (e.g. to match pentagon/box cuts) $N_{123456} \supset \left\{ \varepsilon_1 \cdot \varepsilon_2 t_8 \left(f_3, f_4, f_5, f_6 \right) \left\{ \ell_6^2, \ell_1^2, \cdots, \ell_5^2 \right\} + \varepsilon_1 \cdot \varepsilon_3 t_8 \left(f_2, f_4, f_5, f_6 \right) \left\{ \ell_6^2, \ell_1^2, \cdots, \ell_5^2 \right\}, \\ \varepsilon_1 \cdot \varepsilon_4 t_8 \left(f_2, f_3, f_5, f_6 \right) \left\{ \ell_6^2, \ell_1^2, \ell_2^2 \right\} \right\} + \text{cyc}$

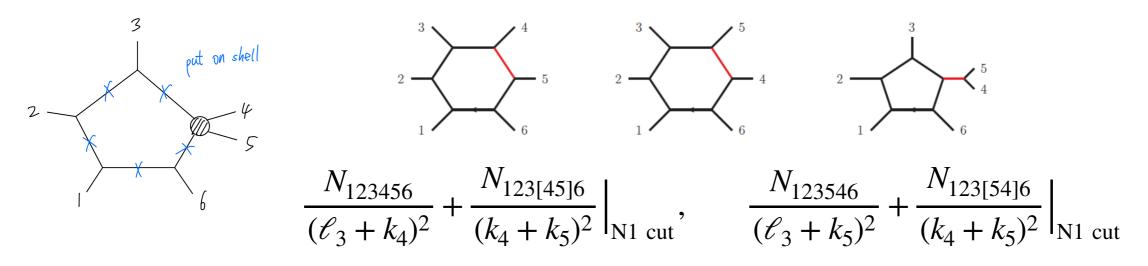
Integrands from BCJ + gauge invariance

• Ansatz: n-gon cut + BCJ (kinematic Jacobi) + power-counting

Figures from Edison's talk @ Amplitudes 2022



Lower cuts get contributions from various diagrams, e.g. 1-2-3-45-6 cut



these cuts (product of trees) are gauge invariant, which puts extremely strong constraints on possible contact terms, e.g. completely fix n=6 ansatz!

Results [w. Edison, Johansson, Schlotterer, Teng, Zhang]

Hexagon numera

+parity-odd (related to

$$\begin{array}{ll} \text{Hexagon numerator} & (\varepsilon_{1} \cdot \ell_{1}) \left(\varepsilon_{2} \cdot \ell_{2}\right) t_{8} \left(f_{3}, f_{4}, f_{5}, f_{6}\right) - \frac{1}{2} \left(\varepsilon_{1} \cdot \ell_{1}\right) t_{8} \left(f_{2}, f_{[3,4]}, f_{5}, f_{6}\right) \\ & + \frac{1}{4} t_{8} \left(f_{1}, f_{[2,3]}, f_{[4,5]}, f_{6}\right) + \frac{1}{6} t_{8} \left(f_{1}, f_{[2,[3,4]]}, f_{5}, f_{6}\right) + \text{perms} \\ & + t_{12} \left(f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}\right) \\ & + t_{12} \left(f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}\right) \\ & + t_{12} \left(f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}\right) \\ & + t_{12} \left(f_{1} \cdot \varepsilon_{2} \left(3\ell_{6}^{2} - 10\ell_{1}^{2} + 3\ell_{2}^{2}\right) t_{8} \left(f_{3}, f_{4}, f_{5}, f_{6}\right) \\ & + \varepsilon_{1} \cdot \varepsilon_{3} \left(\ell_{6}^{2} - 3\ell_{1}^{2} - 3\ell_{2}^{2} + \ell_{3}^{2}\right) t_{8} \left(f_{2}, f_{4}, f_{5}, f_{6}\right) \\ & - \varepsilon_{1} \cdot \varepsilon_{4} \left(\ell_{6}^{2} + \ell_{1}^{2}\right) t_{8} \left(f_{2}, f_{3}, f_{5}, f_{6}\right) + \text{cyc}(1, 2, 3, 4, 5, 6) \end{array}$$

• n-gon cut determined for arbitrary multiplicity (similarly for half-SUSY)

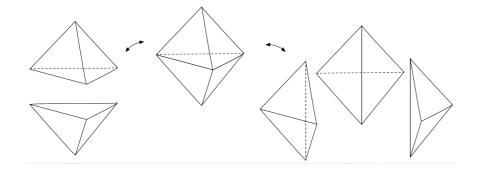
$$N_{12...n} = \sum_{k=0}^{n-4} (-1)^{n-k} \sum_{1 \le i_1 \le i_2 \le ... \le i_k} \epsilon_{i_1} \cdot \ell_{i_1} \epsilon_{i_2} \cdot \ell_{i_2} \dots \epsilon_{i_k} \cdot \ell_{i_k}$$
$$\times \operatorname{tr}_{(\max)}(f_1 \dots \widehat{f_{i_1}} \dots \widehat{f_{i_2}} \dots \widehat{f_{i_k}} \dots f_n) \mod \ell_j^2$$

• Work in progress: determine n-pt numerator using n-gon cut +gauge inv. e.g. for 7-pt with fixed up to 30 parameters (contact terms), all drop in loop integrand!

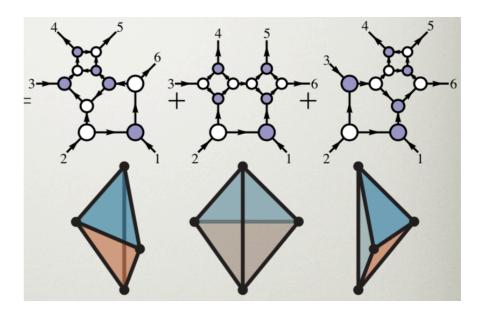
Amplituhedron

Planar N=4 SYM: hydrogen atom of QFT + Ising model of 21st century all-loop integrands from on-shell diagrams, with infinite-dim symmetry <-> integrability

Amplitudes are volume of some "polytopes"! -> geometry encoding QM & relativity!



New maths: positive geometry (real) with a unique canonical form (complex): only logarithmic singularities @ boundaries (residues recursively defined)

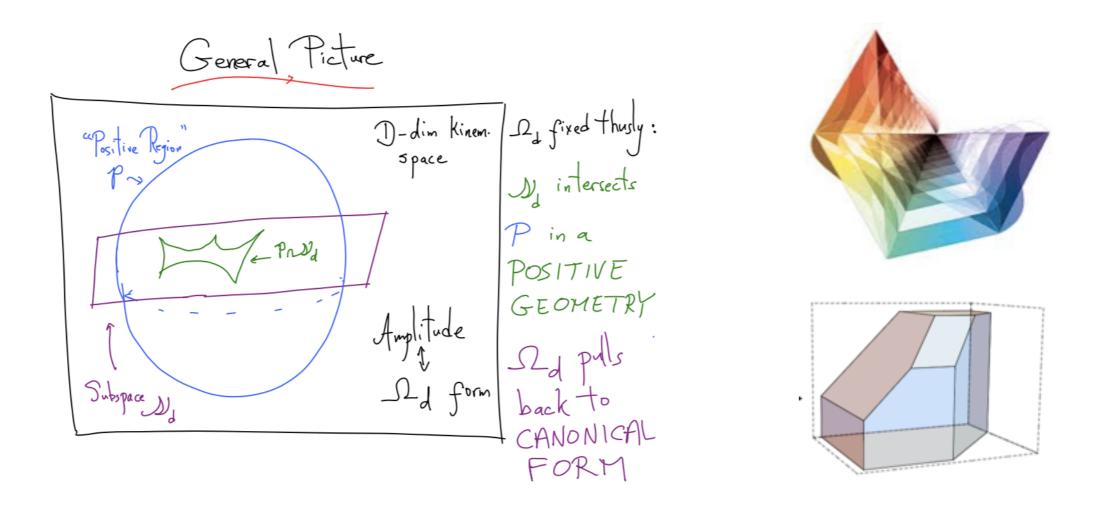


 $Y = C \cdot Z$ external data: twistors

tree amplituhedron: gen. Grassmannian

differential forms in kinematic space for any helicity amplitudes in any gauge theories [SH, C. Zhang, 18]

Amplitudes as differential forms



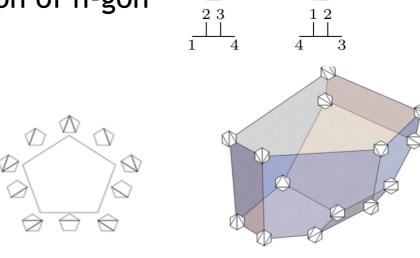
Generalize amplituhedron to general theories in any dimensions (even phi^3)! Bi-adjoint scalar: Amp (form)="volume" of associahedron in kinematic space Geometrize color & its duality to kinematics, forms for gluon/pion amps etc. Locality & unitarity emerges purely from geometries @ infinity of spacetime!

Kinematic associahedron

Associahedron of dim. (n-3): faces 1:1 corresp. with triangulation of n-gon

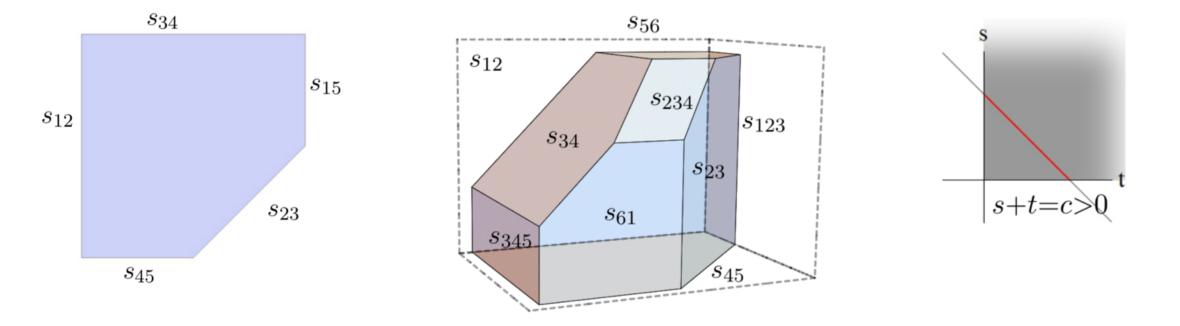
Positive region Δ_n : all planar variables $s_{i,i+1,\dots,j} \ge 0$ (top-dimension)

Subspace H_n : $-s_{ij} = c_{i,j}$ as *positive constants*, for all non-adjacent pairs $1 \le i, j < n$; we have $\frac{(n-2)(n-3)}{2}$ conditions $\implies \dim H_n = n-3$.



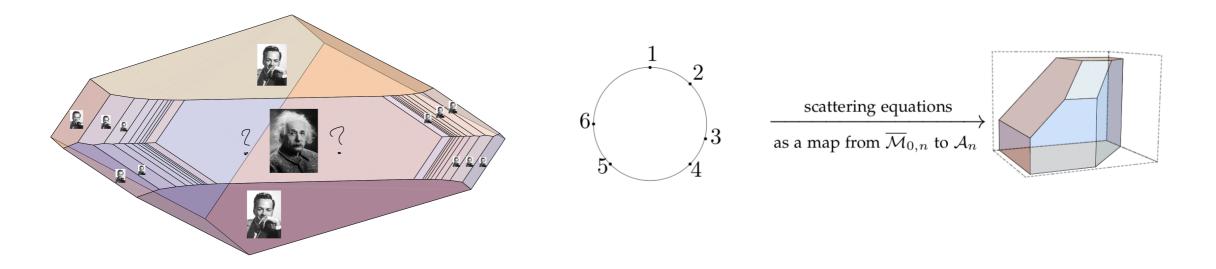
Kinematic Associahedron is their intersection! $A_n := \Delta_n \cap H_n$ $e.g. A_4 = \{s > 0, t > 0\} \cap \{-u = \text{const} > 0\}$

encode singularities of any (colored) massless amplitudes at tree level: gluons, pions, etc.



Particles & strings from geometries [Arkani-Hamed, SH, Lam; + Thomas + Salvatori, 2019 ...]

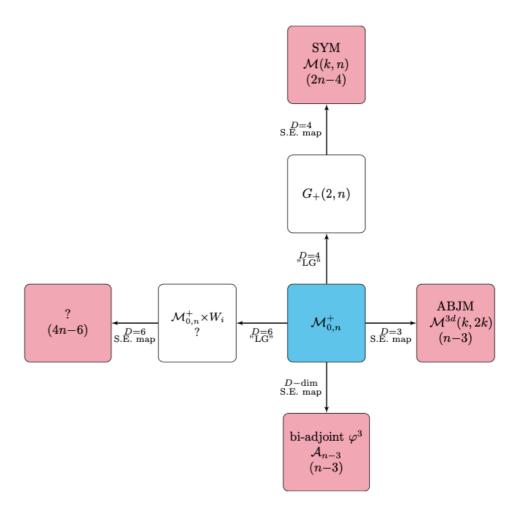
- phi³ amplituhedron: Amps="volume" (form) of polytope (positive geometry) Feynman-diagram expansion=special triangulation
- Hidden symmetry for even scalars manifest by geometry => deep connections between physics, geometry & cluster algebras!
- Surfacehedra [Arkani-Hamed et al]: all-loop phi³ amplitudes from surfaces!



- Natural string integrals for surfacehedra: string without string!
- Field-theory (particles) $\alpha' \to 0 = CHY$ formula with $\alpha' \to \infty$ (saddle points)
- Emergence of strings & particles from new geometries

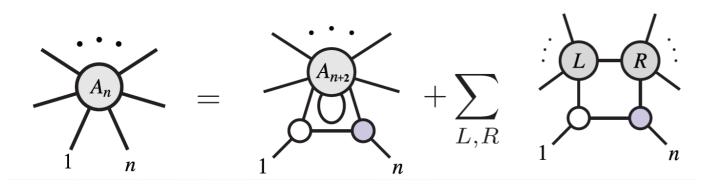
Universality of positive geometries

- Remarkably, such polytopes also appear for cosmology $\Psi_{\rm universe}$, stringy & Feynman integrals, even EFThedron, CFThedron etc.
- Also evidence of **positive geometries** for non-planar N=4 SYM, but any example for all-loop integrands in e.g. ABJM (N=6 super-conformal Chern-Simons)?
- AdS5 strings <--> resum gluons of N=4 amplituhedron, could we see hints of M2 branes via some D=3 all-loop ABJM amplituhedron ???
 - beautiful D=3 tree formula [Huang et al; CHY 14] provides a hint: reduced from Witten's twistor-string tree formula of N=4 SYM
 - Pushforward from moduli space to tree amplituhedron of ABJM [w. Kuo, Zhang, 21]
 - The unified picture for D=3,4 tree amplituhedra => ABJM geometries seem to be related to dim. red. of SYM ones!



Loops in SYM & ABJM

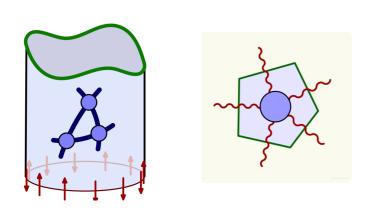
SYM: duality to (super) Wilson Loops (even w. correlators in null limits) -> integrand=WL with Lagrangian insertions -> satisfy the same all-loop recursion/amplituhedron!



e.g. computed explicitly to L=3 for all n,k; L=10 for n=4 & L=6 for n=5

though difficult using amplituhedron, it gives Highly-nontrivial all-loop cuts!

ABJM: no duality to possible WL beyond n=4 (k=n/2 sector only), no def. of integrand for WL! Even for n=4: duality checked to L=2, integrands conjectured up to L=3 [Bianchi et al] amplitudes computed to L=2, n=6,8 (no known bootstrap, Qbar ...) [Caron-Huot, Huang; w. Kuo, Huang, Li 22]



In both theories: extremely rich structure from strong coupling (AdS/CFT) & integrability, especially for 2,3-pt function etc.

Q: can we improve perturbative (amps/WL) side of ABJM? Are there ABJM amplituhedron (even for n=4)? Any connections?

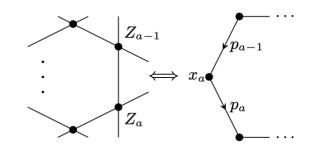
Reduced amplituhedron for ABJM

[SH, Kuo, Li, Zhang, 2022]

The simplest guess works! Reducing external & loop momenta to D=3 gives a new geometry reduced amplituhedron => all-loop (at least n=4) integrands in ABJM!

Momentum twistors [Hodges]: "light rays" of dual spacetime, inspired by duality of $\mathcal{N} = 4$ SYM planar amplitudes with Wilson loops [Alday et al; Brandhuber et al; ...]

- $Z^{I} = (\lambda^{lpha}, \mu^{\dot{lpha}} := x^{lpha, \dot{lpha}} \lambda_{lpha})$: manifest dual conformal symmetry [Drummond et al]
- null polygon: $\lambda_a \tilde{\lambda}_a = p_a = x_{a+1} x_a \leftrightarrow \{Z_1, \dots, Z_n\}$ for n edges; $x_a := (Z_{a-1}, Z_a)$ is a line in twistor space



• (dual) loop momentum $x_0 \leftrightarrow a$ line (AB) in twistor space

The *n*-point *L*-loop amplituhedron: $Z_{a=1,\dots,n}$ for external kinematics and $(AB)_{i=1,\dots,L}$ for loop momenta

For n = 4 (only k = 0): a 4L-dim geometry in $(AB)_i$ space (Z's fixed):

 $\langle (AB)_i 12 \rangle > 0, \quad \langle (AB)_i 23 \rangle > 0, \quad \langle (AB)_i 34 \rangle > 0, \quad \langle (AB)_i 14 \rangle > 0,$ $\langle (AB)_i 13 \rangle < 0, \quad \langle (AB)_i 24 \rangle < 0$

as well as mutual positivity: $\langle (AB)_i (AB)_j \rangle > 0$ [Arkani-Hamed, Trnka 13]

External & loop momenta in D = 3: twistor-space lines with symplectic conditions (in momentum space: $\lambda = \tilde{\lambda}$) [Elvang et al 14]:

$$\mathbf{\Omega}_{IJ} Z_a^I Z_{a+1}^J = \mathbf{\Omega}_{IJ} A_i^I B_i^J = 0, \quad \text{with } \mathbf{\Omega} = \begin{pmatrix} 0 & \epsilon_{2 \times 2} \\ \epsilon_{2 \times 2} & 0 \end{pmatrix}.$$

 $(a = 1, 2, \dots, n \text{ and } i = 1, \dots, L) \rightarrow \text{reduced amplituhedron}$

Focusing on n = 4: a 3L-dim geometry in constrained $(AB)_i$ for D = 3

With parametrization $Z_{A_i} = Z_1 + x_i Z_2 - w_i Z_4$, $Z_{B_i} = y_i Z_2 + Z_3 + z_i Z_4$ \implies def. of n = 4 reduced amplituhedron:

$$orall i: x_i, y_i, z_i, w_i > 0, \quad x_i z_i + y_i w_i = 1, \ orall i, j: (x_i - x_j)(z_i - z_j) + (y_i - y_j)(w_i - w_j) < 0$$

First look at L = 1: the *canonical form* in D = 4 = box integral

$$\Omega_1^{(D=4)} = \frac{dx}{x} \frac{dy}{y} \frac{dz}{z} \frac{dw}{w} = \frac{\langle ABd^2A \rangle \langle ABd^2B \rangle \langle 1234 \rangle^2}{\langle AB12 \rangle \langle AB23 \rangle \langle AB34 \rangle \langle AB14 \rangle}$$

Dim. reduction $\rightarrow D = 3$ box with ϵ num. = one-loop ABJM integrand [Chen, Huang 11]:

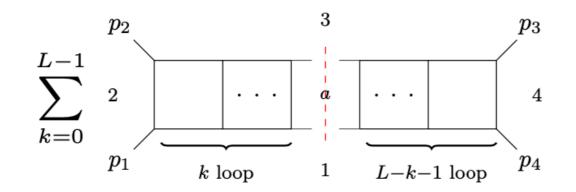
$$\Omega_1 = \frac{dx}{x} \frac{dy}{y} \frac{dz}{z} \frac{dw}{w} \delta(xz + yw - 1) = \frac{d^3(AB)\langle 1234 \rangle^{3/2} (\langle AB13 \rangle \langle AB24 \rangle)^{1/2}}{\langle AB12 \rangle \langle AB23 \rangle \langle AB34 \rangle \langle AB14 \rangle}$$

$$\sum_{x_4} \sum_{x_5} \sum_{x_2} \sum_{p_2} = \int \mathrm{d}^3 x_5 rac{\epsilon(5,1,2,3,4)}{x_{15}^2 x_{25}^2 x_{35}^2 x_{45}^2}, \qquad \epsilon(i,j,k,l,m) \equiv \epsilon_{\mu
u
ho\sigma au} x_i^\mu x_j^
u x_k^\sigma x_m^\sigma x_m^\sigma$$

All-loop cuts from geometries

Beautifully manifest some all-loop cuts of ABJM: unitarity (QM) from geometries!

- Soft cut: e.g. $\langle \ell_i 12 \rangle = \langle \ell_i 23 \rangle = \langle \ell_i 34 \rangle = 0$ or $y_i = z_i = w_i = 0 \implies$ manifest mutual positivity $D_{i,j} > 0$ for any j, residue = (L-1)-loop
- Vanishing cut: any cut isolating odd-point amplitude, *e.g.* w_i = w_j = D_{i,j} = 0 (triple cut) ⇒ D_{i,j} ≤ 0, the residue vanishes; similarly, five-point cut w_i = y_j = D_{i,j} = 0 vanishes
- Double (unitarity) cut: $\langle \ell 14 \rangle = \langle \ell 23 \rangle = 0$



Explicitly checked up to L = 5. Can we prove it from the geometry?

Shorthand notation: e.g. $\underline{\Omega}_1 = \frac{c\epsilon_1}{s_1t_1}$ (strip off $d^3\ell$)

$$\begin{split} \ell_i &\equiv (AB)_i, \qquad c \equiv \langle 1234 \rangle, \qquad \epsilon_i \equiv (c \langle \ell_i 13 \rangle \langle \ell_i 24 \rangle)^{1/2}; \\ s_i &\equiv \langle \ell_i 12 \rangle \langle \ell_i 34 \rangle \sim y_i w_i, \qquad t_i \equiv \langle \ell_i 23 \rangle \langle \ell_i 14 \rangle \sim z_i w_i, \qquad D_{ij} \equiv - \langle \ell_i \ell_j \rangle. \end{split}$$

Log of (n=4) amps & inserted Wilson Loops

The simplest, finite object (1 var.) from log of (n=4) amps => Γ_{cusp} (up to L=3) [Chicherin et al]

IR divergence of log of amplitude

$$\log M = -\sum_{L \ge 1} g^{2L} \frac{\Gamma_{\text{cusp}}^{(L)}}{(L\epsilon)^2} + O(1/\epsilon)$$

With one loop frozen and integrate over others

$$F_{\Gamma}\left(AB_{0}
ight)=\int d\mu_{AB_{1}}\ldots d\mu_{AB_{L-1}}\Omega_{\Gamma}$$
 is IR finite

This object is related to the Wilson loop with Lagrangian insertion

$$\frac{1}{\frac{1}{\sqrt{\frac{3}{4}}}} = \frac{1}{\pi^2} \frac{x_{13}^2 x_{24}^2}{x_{10}^2 x_{20}^2 x_{30}^2 x_{40}^2} F(g; z), \qquad z = \frac{x_{20}^2 x_{40}^2 x_{13}^2}{x_{10}^2 x_{30}^2 x_{24}^2}$$

• Extract Γ -Cusp from F(g, z)

$$g \frac{\partial}{\partial_g} \Gamma_{\text{cusp}} \left(g \right) = -2I[F(g, z)] \quad \text{where} \quad I\left[z^p \right] = \frac{\sin(\pi p)}{\pi p}$$

Q: How to see these from (integrating) n=4 amplituhedron?

Higher-loop integrand extremely complicated, simplify them from geometries?

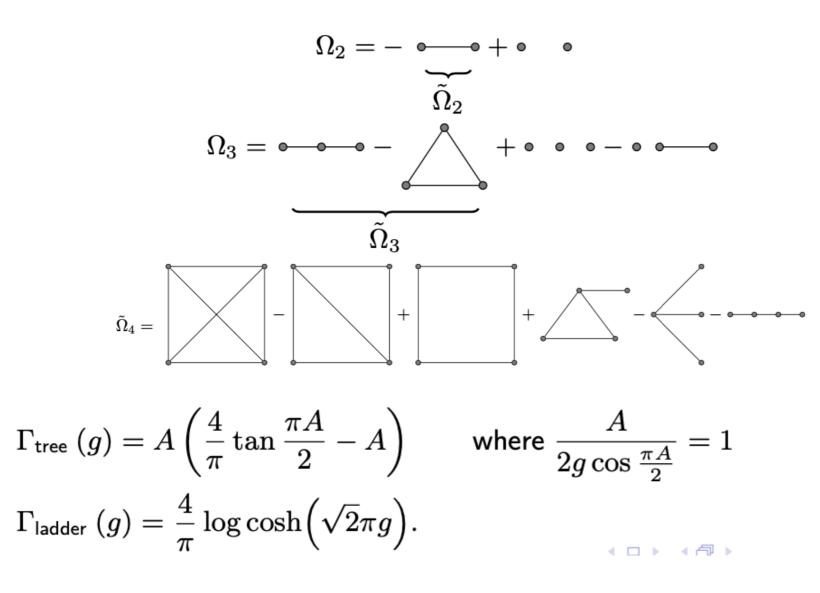
Could we even resum some integrated results =>non-pertubative info?

Negative geometries (n=4)

mutual positivity = no constraint - mutual negativity => "building blocks"

Decomposition into sum of negative geometries: $\bullet \bullet + \bullet \bullet \bullet = \bullet \bullet$

The sum of connected graphs gives logarithm of amplitudes [Arkani-Hamed et al], e.g.



much easier to compute form/integrand of such negative geometries, especially "ladders" or even "trees" to all loops!

much easier to integrate (only 1-loop divergence), possible to resum to give "tree"/"ladder" contribution of Γ_{cusp} !

D=3 amplituhedron = bipartite geometries

Huge reduction in D=3: only bipartite graphs (with "arrows") survive! e.g. no triangle for L=3 only 2 trees & box for L=4 (with source & sinks)

$$e.g. \qquad \underbrace{\tilde{\Omega}_3}_{1 \quad 2 \quad 3} = \underbrace{\tilde{\Omega}_3}_{1 \quad 2 \quad 3} = \underbrace{\tilde{\Omega}_3}_{1 \quad 2 \quad 3} \Longrightarrow \qquad \underbrace{\tilde{\Omega}_3}_{1 \quad 2 \quad 3} = \underbrace{\tilde{\Omega}_3 = \tilde{\Omega}_3 - \tilde{\Omega}_3}_{1 \quad 2 \quad 3 \quad 1 \quad 2 \quad 3} = \underbrace{\tilde{\Omega}_3 = \tilde{\Omega}_3 - \tilde{\Omega}_3}_{1 \quad 2 \quad 3 \quad 1 \quad 2 \quad 3} = \underbrace{\tilde{\Omega}_3 = \tilde{\Omega}_3 - \tilde{\Omega}_3}_{1 \quad 2 \quad 3 \quad 1 \quad 2 \quad 3} = \underbrace{\tilde{\Omega}_3 = \tilde{\Omega}_3 - \tilde{\Omega}_3}_{1 \quad 2 \quad 3 \quad 1 \quad 2 \quad 3} = \underbrace{\tilde{\Omega}_3 = \tilde{\Omega}_3 - \tilde{\Omega}_3}_{1 \quad 2 \quad 3 \quad 1 \quad 2 \quad 3} = \underbrace{\tilde{\Omega}_3 = \tilde{\Omega}_3 - \tilde{\Omega}_3}_{1 \quad 2 \quad 3 \quad 1 \quad 2 \quad 3} = \underbrace{\tilde{\Omega}_3 = \tilde{\Omega}_3 - \tilde{\Omega}_3}_{1 \quad 2 \quad 3 \quad 1 \quad 2 \quad 3} = \underbrace{\tilde{\Omega}_3 = \tilde{\Omega}_3 - \tilde{\Omega}_3}_{1 \quad 2 \quad 3 \quad 1 \quad 2 \quad 3} = \underbrace{\tilde{\Omega}_3 = \tilde{\Omega}_3 - \tilde{\Omega}_3}_{1 \quad 2 \quad 3 \quad 1 \quad 2 \quad 3} = \underbrace{\tilde{\Omega}_3 = \tilde{\Omega}_3 - \tilde{\Omega}_3}_{1 \quad 2 \quad 3 \quad 1 \quad 2 \quad 3} = \underbrace{\tilde{\Omega}_3 = \tilde{\Omega}_3 - \tilde{\Omega}_3}_{1 \quad 2 \quad 3 \quad 1 \quad 2 \quad 3} = \underbrace{\tilde{\Omega}_3 = \tilde{\Omega}_3 - \tilde{\Omega}_3}_{1 \quad 2 \quad 3 \quad 1 \quad 2 \quad 3} = \underbrace{\tilde{\Omega}_3 = \tilde{\Omega}_3 - \tilde{\Omega}_3}_{1 \quad 2 \quad 3 \quad 1 \quad 2 \quad 3} = \underbrace{\tilde{\Omega}_3 = \tilde{\Omega}_3 - \tilde{\Omega}_3}_{1 \quad 2 \quad 3 \quad 1 \quad 2 \quad 3} = \underbrace{\tilde{\Omega}_3 = \tilde{\Omega}_3 - \tilde{\Omega}_3}_{1 \quad 2 \quad 3 \quad 1 \quad 2 \quad 3} = \underbrace{\tilde{\Omega}_3 = \tilde{\Omega}_3 - \tilde{\Omega}_3}_{1 \quad 2 \quad 3 \quad 1 \quad 2 \quad 3} = \underbrace{\tilde{\Omega}_3 = \tilde{\Omega}_3 - \tilde{\Omega}_3}_{1 \quad 2 \quad 3 \quad 1 \quad 2 \quad 3} = \underbrace{\tilde{\Omega}_3 = \tilde{\Omega}_3 - \tilde{\Omega}_3}_{1 \quad 2 \quad 3 \quad 1 \quad 2 \quad 3} = \underbrace{\tilde{\Omega}_3 = \tilde{\Omega}_3 - \tilde{\Omega}_3}_{1 \quad 2 \quad 3 \quad 1 \quad 2 \quad 3} = \underbrace{\tilde{\Omega}_3 = \tilde{\Omega}_3 - \tilde{\Omega}_3}_{1 \quad 2 \quad 3 \quad 1 \quad 2 \quad 3} = \underbrace{\tilde{\Omega}_3 = \tilde{\Omega}_3 - \tilde{\Omega}_3}_{1 \quad 2 \quad 3 \quad 1 \quad 2 \quad 3} = \underbrace{\tilde{\Omega}_3 = \tilde{\Omega}_3 - \tilde{\Omega}_3}_{1 \quad 2 \quad 3 \quad 1 \quad 2 \quad 3} = \underbrace{\tilde{\Omega}_3 = \tilde{\Omega}_3 - \tilde{\Omega}_3}_{1 \quad 2 \quad 3 \quad 1 \quad 2 \quad 3} = \underbrace{\tilde{\Omega}_3 = \tilde{\Omega}_3 - \tilde{\Omega}_3}_{1 \quad 2 \quad 3 \quad 1 \quad 2 \quad 3} = \underbrace{\tilde{\Omega}_3 = \tilde{\Omega}_3 - \tilde{\Omega}_3}_{1 \quad 2 \quad 3 \quad 1 \quad 2 \quad 3} = \underbrace{\tilde{\Omega}_3 = \tilde{\Omega}_3 - \tilde{\Omega}_3}_{1 \quad 2 \quad 3 \quad 1 \quad 2 \quad 3} = \underbrace{\tilde{\Omega}_3 = \tilde{\Omega}_3 - \tilde{\Omega}_3}_{1 \quad 2 \quad 3 \quad 1 \quad 2 \quad 3} = \underbrace{\tilde{\Omega}_3 = \tilde{\Omega}_3 - \tilde{\Omega}_3}_{1 \quad 2 \quad 3 \quad 1 \quad 2 \quad 3} = \underbrace{\tilde{\Omega}_3 = \tilde{\Omega}_3 - \tilde{\Omega}_3}_{1 \quad 2 \quad 3 \quad 1 \quad 2 \quad 3} = \underbrace{\tilde{\Omega}_3 = \tilde{\Omega}_3 - \tilde{\Omega}_3}_{1 \quad 2 \quad 3 \quad 1 \quad 2 \quad 3} = \underbrace{\tilde{\Omega}_3 = \tilde{\Omega}_3 - \tilde{\Omega}_3}_{1 \quad 2 \quad 3 \quad 1 \quad 2 \quad 3} = \underbrace{\tilde{\Omega}_3 = \tilde{\Omega}_3 - \tilde{\Omega}_3}_{1 \quad 2 \quad 3 \quad 1 \quad 2 \quad 3} = \underbrace{\tilde{\Omega}_3 = \tilde{\Omega}_3 - \tilde{\Omega}_3}_{1 \quad 2 \quad 3 \quad 1 \quad 2 \quad 3} = \underbrace{\tilde{\Omega}_3 = \tilde{\Omega}_3 - \tilde{\Omega}_3}_{1 \quad 2 \quad 3 \quad 1 \quad 2 \quad 3} = \underbrace{\tilde{\Omega}_3 = \tilde{\Omega}_3 - \tilde{\Omega}_3}_{1 \quad 2 \quad 3 \quad 1 \quad 2 \quad 3} = \underbrace{\tilde{\Omega}_3 = \tilde{\Omega}_3 - \tilde{\Omega}_3}_{1 \quad 2 \quad 3} = \underbrace{\tilde{\Omega}_$$

A tiny fraction ($\rightarrow 0$ as $L \rightarrow \infty$) of graphs remain (relatively simple ones):

L	top. of G	top. of g	directed acyclic graphs	bipartite g
2	1	1	2	1
3	2	1	18	3
4	6	3	446	19
5	21	5	26430	195
6	112	17	3596762	3031
7	853	44	1111506858	67263

Transitive reduction: D = 3 mutual negativity \implies (time) ordering, no closed loop \rightarrow all non-bipartite (directed) graphs cancel (theorem [He et al 22]);

$$\sum_{\mathscr{G}} (-)^E \mathcal{A}_{\mathscr{G}} \xrightarrow{\text{time}}_{\text{order}} \sum_{\text{directed acyclic } G} (-)^E \mathcal{A}_G \xrightarrow{\text{trans.}}_{\text{red.}} \sum_{\text{bipartite } g} (-)^E \mathcal{A}_g$$

Canonical forms = ABJM integrands

Bipartite geometries give simple forms!

$$i \qquad j \qquad j$$

$$\bullet \qquad \bullet \qquad \bullet \qquad \circ \qquad \circ$$

$$\frac{1}{s_i} \qquad \frac{1}{D_{ij}} \qquad \frac{1}{t_j}$$

$$s_i \equiv \langle \ell_i 12 \rangle \langle \ell_i 34 \rangle \sim y_i w_i, \qquad t_i \equiv \langle \ell_i 23 \rangle \langle \ell_i 14 \rangle \sim z_i w_i, \qquad D_{ij} \equiv -\langle \ell_i \ell_j \rangle.$$

singularity structure: black (white) node has only poles $y_i w_i$ $(x_i z_i = 1 - y_i w_i)$!

Canonical forms for bipartite geometries: fix numerators given the poles

The log of amps for L = 2, 3: only (non-planar) ladders!

$$\tilde{\underline{\Omega}}_{2} = \underbrace{\bullet }_{1 2}^{\circ} + \underbrace{\circ }_{1 2}^{\circ} = \frac{2c^{2}}{D_{12}} \left(\frac{1}{s_{1}t_{2}} + \frac{1}{t_{1}s_{2}} \right)$$

$$= -2 \frac{\langle 1234 \rangle^{2}}{\langle \ell_{1}12 \rangle \langle \ell_{1}34 \rangle \langle \ell_{1}\ell_{2} \rangle \langle \ell_{2}23 \rangle \langle \ell_{2}14 \rangle} + (\ell_{1} \leftrightarrow \ell_{2})$$

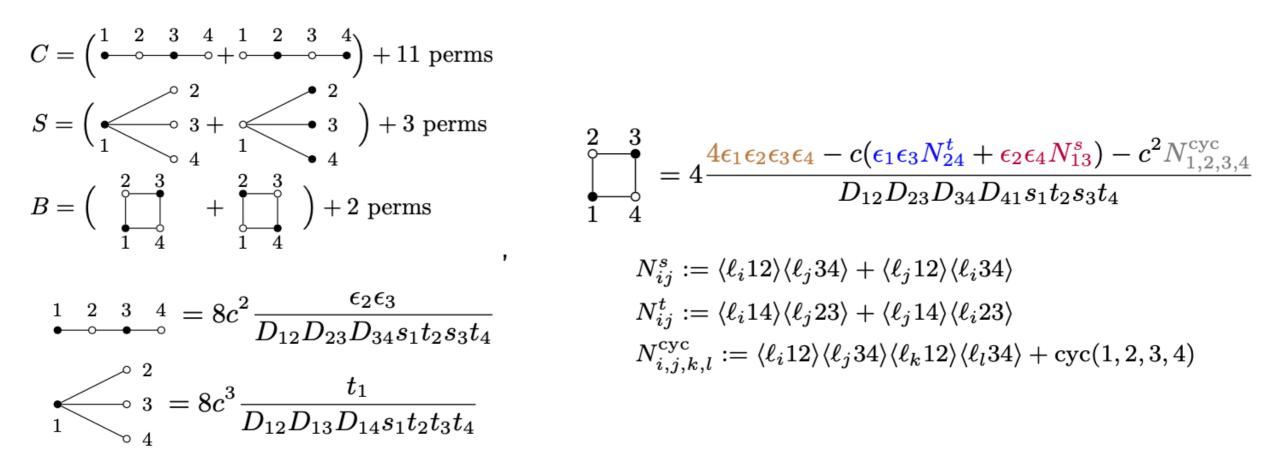
$$\tilde{\underline{\Omega}}_{3} = \underbrace{\bullet }_{1 2 3}^{\circ} + \underbrace{\circ }_{1 2 3}^{\circ} + \underbrace{\bullet }_{2 1 3}^{\circ} + \underbrace{\circ }_{3 1 2}^{\circ} + \underbrace{\circ }_{3 1 2}$$

$$=\frac{4c^{2}\epsilon_{2}}{s_{1}t_{2}s_{3}D_{12}D_{23}} + (s\leftrightarrow t) + 2 \text{ perms.},$$

nicely confirm n = 4 3-loop ABJM integrand conjectured in [Bianchi et al 11]

L=4,5,(6) & all-loop "tree" forms

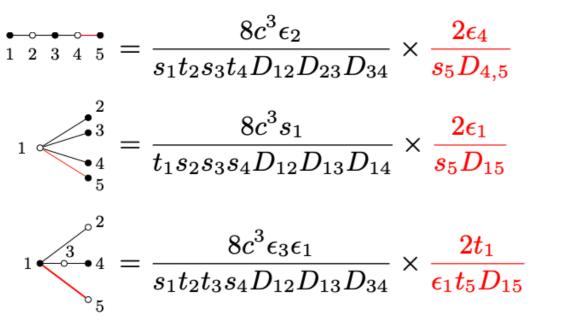
L = 4: only chain, star, box graphs $\implies \tilde{\Omega}_4 = -C - S + B$:

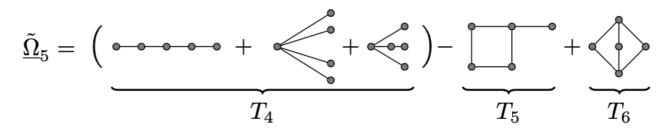


 Inverse soft construction of General Tree Formula Consider a L-tree obtained by connecting the added white vertex j to vertex i from a L-1-tree:

$$\underline{\Omega}_{L}^{\text{tree}}(j \to i) = \underline{\Omega}_{L-1}^{\text{tree}} \times \mathcal{T}_{j \to i}$$

where $\mathcal{T}_{j \to i} = \frac{2\epsilon_i}{c^{1/2}D_{i,j}t_j}$ for valency v_i odd, and $\frac{2c^{1/2}t_i}{\epsilon_i D_{i,j}t_j}$ for v_i even. Similarly with $t \to s$ if we have black j attached to white i. L = 5: contributions from 5 topologies (4, 5, 6 edges):





- $1 + \frac{3}{5} + \frac{8c^{3}\epsilon_{3}\epsilon_{1}}{s_{1}t_{2}t_{3}s_{4}D_{12}D_{13}D_{34}} \times \frac{2t_{1}}{\epsilon_{1}t_{5}D_{15}}$ More non-trivial forms for T_{5} (box + edge) and T_{6} ($K_{2,3}$ graph) e.g. • $More non-trivial forms for <math>T_{5}$ (box + edge) and T_{6} ($K_{2,3}$ graph) e.g. • $More non-trivial forms for <math>T_{5}$ (box + edge) and T_{6} ($K_{2,3}$ graph) e.g. • $More non-trivial forms for <math>T_{5}$ (box + edge) and T_{6} ($K_{2,3}$ graph) e.g. • $More non-trivial forms for <math>T_{5}$ (box + edge) and T_{6} ($K_{2,3}$ graph) e.g. • $More non-trivial forms for <math>T_{5}$ (box + edge) and T_{6} ($K_{2,3}$ graph) e.g. • $More non-trivial forms for <math>T_{5}$ (box + edge) and T_{6} ($K_{2,3}$ graph) e.g. • $More non-trivial forms for <math>T_{5}$ (box + edge) and T_{6} ($K_{2,3}$ graph) e.g. • $More non-trivial forms for <math>T_{5}$ (box + edge) and T_{6} ($K_{2,3}$ graph) e.g. • $More non-trivial forms for <math>T_{5}$ (box + edge) and T_{6} ($K_{2,3}$ graph) e.g. • $More non-trivial forms for <math>T_{5}$ (box + edge) and T_{6} ($K_{2,3}$ graph) e.g. • $More non-trivial forms for <math>T_{5}$ (box + edge) and T_{6} ($K_{2,3}$ graph) e.g. • $More non-trivial forms for <math>T_{5}$ (box + edge) and T_{6} ($K_{2,3}$ graph) e.g.
- For higher loop, the hexagon is already known(fixed by L-cut)

$$2 \overbrace{\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & &$$

where

$$\begin{split} EP_2 &:= \epsilon_1 \epsilon_3 P_{13}^t + \mathsf{cyc.} \ \text{by 2} \ (\ell_1, \cdots, \ell_6) + \epsilon_2 \epsilon_4 P_{24}^s + \mathsf{cyc.} \ \text{by 2}(\ell_1, \cdots, \ell_6) \\ P_{13}^t &:= \langle \ell_5 23 \rangle \langle \ell_2 23 \rangle \langle \ell_4 14 \rangle \langle \ell_6 14 \rangle + (14) \leftrightarrow (23) \\ P_{24}^s &:= \langle \ell_6 12 \rangle \langle \ell_3 12 \rangle \langle \ell_5 34 \rangle \langle \ell_1 34 \rangle + (12) \leftrightarrow (34) \\ N_{1,2,3,4,5,6}^{\mathrm{cyc}} &:= \prod_{i=1,3,5} \langle \ell_i 12 \rangle \prod_{j=2,4,6} \langle \ell_j 34 \rangle + \mathsf{cyclic} \ (1,2,3,4). \end{split}$$

• Other topologies at L = 6 are still in progress.

parity: odd/even # of ϵ for odd/even L

similar to N=4: only 1-loop divergence for even L (vanish for odd L)!

How to integrate them e.g. for L=4 => $\Gamma_{\rm cusp}$ at NNLO

any hint of resumming trees?

Summary & outlook

Scattering Amplitudes: applications to pheno/formal QFT, gravity, strings, math etc.

Double-copy, particles & strings: a web of relations for gluons, pions, gravitons ... double copy beyond amps: classical solutions, gravity waves,?

massless S-matrix via punctured Riemann spheres (explains & extends double-copy); higher loops? A (weak-weak) duality for S-matrix?

New geometries: "polytopes" in kinematic space & amps as differential forms "theory at infinity": geometry/combinatorics \rightarrow Lorentz inv. + unitarity

AdS/CFT & amps: higher-point ABJM amplituhedron? Wilson Loops? other theories (D=6)? Integrations & resum => all-loop Γ_{cusp} ? WHY such a relation at all ??? SYM -> ABJM fixed by (Yangian) symmetry?

"Marble statues in the Forest beyond Quantum Mechanics & Spacetime" What will we see next?

Thank You!

Acknowledgement: figures from N. Arkani-Hamed, Z. Bern, L. Dixon, A. Edison, Y. Geyer, J. Trnka, G. Salvatori