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Line operators

Line operators are very important in the study of gauge theories.

The vacuum expectation values (vevs) of Wilson-’t Hooft loop
operators can be used to distinguish different (infrared) phases of
gauge theories [Wilson, 74][’t Hooft, 77].
The precise definition/description of the gauge theory in fact
includes the choice of the set of mutually local Wilson-’t Hooft line
operators included in the theory [Aharony, Seiberg, Tachikawa,
13].
These line operators can carry charges of 1-form global
symmetries [Gaoitto, Kapustin, Seiberg, Willett, 2014], [cf.
Yi-Nan’s talk] .
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Relation with other quantities

Wilson loops are closely related to many quantities in various theories,
Cusp anomalous dimensions (related to anomalous dimension of
twist-2 operators),

Amplitudes in N = 4 SYM, [Alday, Maldacena, 0705][Drummond,
Henn, Korchemsky, Sotatchev, 07]... [Ben-Israsel, Tumanov,
Sever, 18][Ouyang, Shu, 21]...
Form factors in N = 4 SYM, [Alday Maldacena, 0710][Maldacena,
Zhiboedov, 10][Brandhuber, Spence, Travaglini, Yang, 11][Gao,
Yang, 13]...[Review: Yang, 19]
Feynman integrals, [He, Li, Tang, Yang, 20][He, Li, Yang, Zhang,
20]
Bremsstrahlung functions, [Correa, Henn, Maldacena, Sever, 12],
...
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BPS Wilson loops

BPS Wilson loops attract many attentions since the earily days of
AdS/CFT correspondence [Maldacena, 97].

For a circular WL in N = 4 SYM to be BPS, it should couple with
the scalars in the theory [Maldacena, 98][Rey, Yee, 98][Drukker et.
al. 99]
The vev of a half-BPS Wilson loop is a non-trivial function of the
SYM coupling constant.
On the field theory side, it was conjectured that the computations
reduces to the ones in a Gaussian matrix model [Erickson et.
al.00]. And the strong coupling results match with the ones from
the string theory side [Drukker et. al. 99][Berenstein et. al. 98].
This conjecture was later proved using supersymmetric
localization. [Pestun, 07]
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BPS Wilson loops in 3d

The story in 3d super-Chern-Simons theories is more complicated
and interesting [cf. Song’s talk including amplitudes in
Chern-Simons theories].

[Gaiotto, Yin, 07] constructed half-BPS (1/3-BPS) WL in N = 2
(N = 3) super-Chern-Simons theories. This constructions is
similar to the above 4d BPS WLs.
Similar construction in ABJM theory only gives 1/6-BPS WLs.
[Chen, JW][Drukker, Plefka, Young][Rey, Suyama, Yamaguchi] 08
But the string theory side indicates that there should be half-BPS
Wilson loops in this theory. [DPY][RSY] above. [cf. Yi-Nan’s talk
on AdS4/CFT3]
Later this puzzle was solved by including the coupling to fermions
to make up half-BPS WLs. [Drukker, Trancanelli, 09]
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BPS WLs in 3d

Later we [Ouyang, JW, Zhang, 15] constructed 1/6-BPS fermionic
WLs in ABJM.

These new loops are not locally SU(3). So they are not dual to
fundamental strings simply embedded in AdS4 × CP 3.
In another word, they are not dual to F-strings with Dirichnet
boundary conditions in all directions of CP 3.
They are dual to F-strings with complicated mixed boundary
conditions. [Correa, Giraldo-Rivera, Silva, 19]
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BPS WLs in 3d

These general 1/6-BPS Wilson loops can be thought of as
marginal deformations of half-BPS Wilson loops from the defect
conformal field theory (dCFT) point of view.

The marginality of the deformations is yet to be proved at quantum
level in the field theory side,
The margnality is supported by the general classification of
superconformal line defects and the studies of their deformations.
[Agmon, Wang, 20]
It is also supported by the fact that there are massless fermions
on the worldsheet of F-string dual to half-BPS Wilson loops. [Kim,
Kim, Lee, 12][Aguilera-Damia et. al. 18][Correa, Giraldo-Rivera,
Silva, 19]
We also constructed fermionic half-BPS WLs in general quiver
N = 2 super-Chern-Simons theories. [Ouyang, JW, Zhang,
15][Mauri, Ouyang, Penati, JW, Zhang, 18]
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Fermionic BPS WLs in 4d

Could this constuction of fermionic BPS WLs be generalized to
four-dimensional cases?

Yes, we can!
We need to introduce extra dimensionful parameter in the
construction. So even for case of straight line, scale invariance is
lost. But this is fine.
We constructed BPS WLs for lines and circular loops in N = 2
quiver theories and N = 4 SYM.
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General discussions on WLs

For closed contour C, the Wilson loop

W = TrRP exp

(
i

∮
C
Aµ(x(τ))ẋ

µdτ

)
, (1)

is gauge invariant.

For open contour C with both ends at infinity the Wilson loop

W = TrRP exp

(
i

∫
C
Aµ(x(τ))ẋ

µdτ

)
, (2)

is invariant under gauge transformation when the gauge
transformation parameter vanishes at infinity.
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General discussions on WLs

But there are subtleties in the perturbative computations.

If we formally consider a straight WL with finite length L, taking the
L→ ∞ limit can be delicate. [Griguolo, et. al.., 12]
So for straight WL, we mainly focus on the (super-)connection.
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General discussions on BPS WLs

Let us define,
L = Aµẋ

µ +B(x), (3)

with B in the adjoint representation.

Then

W = TrRP exp

(
i

∮
C
Ldτ

)
, (4)

is gauge invariant.
For certain global supersymmetry transformation δ, δL = 0 implies
δW = 0.
Such loop operators were named Maldacena-Wilson loops.
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General discussions on BPS WLs

For quiver gauge theory with gauge group G1 ×G2. Let us define
the superconnection

L = Aµẋ
µ + B̃(x) + F (x), (5)

and assume that it has the structure of a supermatrix,

And then L can be decomposed as

L =

(
B1 F1

F2 B2

)
. (6)
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General discussions on WLs

Assume under a supercharge Qs (with Grassmann odd factor
discarded), QsL = ∂τGs − i[Aµẋ

µ + B̃(x), Gs] + i{F (x), Gs}, and
Gs is block anti-diagonal. Then a BPS Wilson loop preserving the
supercharge Qs can be defined as

Wfer = sTrP exp

(
i

∮
Ldτ

)
, (7)

when Gs is periodic, or

Wfer = TrP exp

(
i

∮
Ldτ

)
, (8)

when Gs is anti-periodic. [K. Lee, S. Lee, 10]
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N = 2 superconformal SU(N)× SU(N) quiver theory

Let us consider the N = 2 superconformal SU(N)× SU(N)
quiver theory which is a marginal deformation of the Z2 orbifold of
N = 4 SYM.

Figure: Quiver diagram.
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Fields in the vector multiplets

The fields in the two N = 2 vector multiplets corresponding to two
gauge group factors can be arranged into 2× 2 block matrices:

Aµ =

(
A

(1)
µ 0

0 A
(2)
µ

)
, µ = 0, ..., 5

λα =

(
λ
(1)
α 0

0 λ
(2)
α

)
, α = 1, 2.

(9)

Here Am with m = 0, ..., 3 is the gauge field and A4,5 are two real
scalars.
We use 6d spinorial notations for the spinors. The SO(1, 5) Weyl
spinors λ1 and λ2 have chirality −1 for Γ012345 and satisfy the
reality condition λ̄α = −ϵαβλcβ.
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Fields in the hyper multiplets

The matter content consists of two bifundamental hypermultiplets
with component fields:

qα =

(
0 q(1)α

q(2)α 0

)
, ψ =

(
0 ψ(1)

ψ(2) 0

)
. (10)

Here q1,2 are complex scalars and ψ is an SO(1, 5) Weyl spinor of
chirality +1 for Γ012345.
We denote by qα the complex conjugate of qα.
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Action

The action of the N = 2 gauge theory is

SN=2 =

∫
d4x

(
−1

4
Tr(FµνF

µν)− i

2
Tr(λ̄αΓµDµλα)−DµqαD

µqα

−iψ̄ΓµDµψ+
√
2gλ̄αAqαTAψ−

√
2gψ̄TAq

αλAα

−g2(qαTAqβ)(qβTAq
α) +

1

2
g2(qαTAq

α)(qβT
Aqβ)

)
, (11)

where TA are the generators of the gauge group.
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Coupling constants

The coupling constants for the two gauge group factors can be
independently varied while preserving N = 2 superconformal
symmetry. We assemble them into a matrix:

g =

(
g(1)IN 0

0 g(2)IN

)
, (12)

where we denote by IN the N ×N identity matrix.
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Superconformal transformation

The above action is invariant under the following superconformal
transformation,

δAµ = −iξ̄αΓµλα = iλ̄αΓµξα,

δqα = −i
√
2ξ̄αψ,

δqα = −i
√
2ψ̄ξα,

δλAα =
1

2
FA
µνΓ

µνξα+2igqαT
Aqβξβ − igqβT

Aqβξα−2AA
a Γ

aϑα,

δλ̄αA = −1

2
ξ̄αFA

µνΓ
µν−2igqβT

Aqαξ̄β + igqβT
Aqβ ξ̄α+2ϑ̄αAA

a Γ
a,

δψ = −
√
2Dµq

αΓµξα−2
√
2qαϑα,

δψ̄ =
√
2ξ̄αΓµDµqα−2

√
2ϑ̄αqα.

(13)

Here ξα = θα + xmΓmϑα and the index a = 4, 5.
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Superconformation transformation

The constant spinors θα and ϑα generate Poincaré
supersymmetry transformations and conformal supersymmetry
transformations, respectively.

We fixed a typo in [Rey, Suyama, 2010]. This point is very crucial
for us.
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Bosonic BPS connection

In Minkowski spacetime, one can define a 1/2 BPS Wilson line
along the timelike infinite straight line straight line xm = δm0 τ as

Wbos = Pei
∫
dτL1/2(τ), L1/2 = gA0 − gA5. (14)

The persevered supersymmetries can be parameterized by ξα
satisfying

Γ5Γ0ξα = ξα. (15)

This leads to
Γ5Γ0θα = θα, Γ5Γ0ϑα = −ϑα. (16)
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Supercharges

We decompose ξα as ξα = θsα where θ is a real Grassmann
variable and sα are bosonic spinors. We focus on the Poincaré
supercharges for superconnection along a line.
We define Qs using δξ =

√
2θQs.
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Fermionic superconnections

The BPS superconnection L (along the above line) is a
supermatrix, analogous to the ones constructed in [Drukker,
Trancanelli, 2009]:

L = L1/2 +B + F. (17)

The matrices B and F are defined as

B =

(
B(1) 0

0 B(2)

)
, (18)

F =ζcψ + ψ̄η, (19)

ζ =

(
ζ(1)IN 0

0 ζ(2)IN

)
, (20)

η =

(
η(2)IN 0

0 η(1)IN

)
, (21)
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Superconnection

We fix a spinor sα satisfying Γ5Γ0sα = sα and demand L to
transform as

QsL = D0Gs ≡ ∂0Gs − i[L1/2 +B,Gs] + i{F,Gs}, (22)

for some bosonic matrix Gs.

Splitting this constraint into a fermonic and bosonic part, we find

QsB = i{F,Gs}, (23)
QsF = ∂0Gs − i[L1/2 +B,Gs]. (24)
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Superconnection

The solution is

L = L1/2 +
2i

(s̄αΓ0sα)
QsGs −

2

(s̄αΓ0sα)
G2

s, (25)

where
Gs = ζcΓ0sαq

α − qαs̄
αΓ0η, (26)

with η and ζc satisfying

Γ5Γ0η = η, ζcΓ5Γ0 = −ζc, (27)
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Relaxing the real condition in Euclidean signature

In the Euclidean signature, the bars over the spinors now do not
stand for Dirac conjugation. ψ and ψ̄ are independent spinors.

It is convenient to define s̄α = −ϵαβscβ for any spinors with an α
index.
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Circular Wilson loop

Consider the circle (x0, x1, x2, x3) = r(cos τ, sin τ, 0, 0) in the
x0 − x1 plane.

Let us start with the 1/2-BPS bosonic connection

L1/2 = gẋmAm + igrA5, (28)

where dot denotes derivation with respect to τ .
The supersymmetries preserved by the bosonic Wilson loop
Wbos = P exp(i

∫ 2π
0 dτL1/2(τ)) satisfy

r−1ẋmΓmΓ5ξα = iξα, ⇒ ϑα = −ir−1Γ015θα. (29)
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Fermionic BPS circular WL

We would like to construct a Wilson loop on the same contour
which is invariant under a supercharge Qs parameterized by

θα =
1

2
√
2
θsα, ϑα = − i

2
√
2r

Γ015θsα (30)

where θ is a complex Grassman variable and sα is a fixed bosonic
spinor.

As the previous case, we want to find Gs and L such that
QsL = DτGs.
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Fermionic BPS circular WL

Assuming that s1 and s2 are linearly independent, we find the
solutions are

L = L1/2 +
2r

s̄αΠ−Γ5sα
QsGs + i

2r

s̄αΠ−Γ5sα
G2

s, (31)

Gs = iζcΠ−Γ5sαq
α − iqαs̄

αΓ5Π+η, (32)

with Π± = 1
2 ± i

2rΓ5ẋ
mΓm, and η, ζc are τ -independent and

satisfying

ζcΓ015sα = s̄αΓ015η = 0. (33)
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Fermionic BPS circular WL

Because Gs is periodic on the contour, the trace of the holonomy
of L does not preserve the supercharge Qs, which is different from
their three-dimensional counterparts [Drukker, Trancanelli, 2009].

Since L has a natural supermatrix structure, we can define the
Wilson loop by using the supertrace:

Wfer = sTrP exp

(
i

∮
Ldτ

)
, (34)

which preserves the supercharge Qs.
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Supersymmetry enhancement

For general ζ and η, this WL is 1/16-BPS.
For special ζ and η, this WL is 1/8- or 3/16-BPS.
It preserves quite fewer supersymmetries, comparing with bosonic
circular WLs.
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Relation with bosonic WLs

Following similar steps as in the three-dimensional case [Drukker,
Trancanelli, 2009][Ouyang, JW, Zhang, 2015], one can show that
the condition QsL = DτGs leads to a classical Qs-cohomological
equivalence between the fermionic BPS Wilson loop and the
bosonic one:

Wfer −Wbos = QsV, (35)

where

Wbos = sTrP exp

(
i

∮
L1/2dτ

)
, (36)

and V is a complicated function of the gauge and matter fields.
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N = 4 super Yang-Mills

The action of N = 4 SYM is

SN=4 =

∫
R4

d4x

(
−1

4
Tr(FMNF

MN )− i

2
Tr(Ψ̄ΓMDMΨ)

)
. (37)

Now ΓM are 10d gamma matrices.

We use the index conventions M,N = 0, ..., 9 and R,S = 5, ..., 9.
And AR are six scalars in the adjoint representation of the gauge
group.
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N = 4 superconformal symmetry

The action is invariant under the superconformal transformations:

δAM = −iξcΓMΨ,

δΨ =
1

2
FMNΓMNξ − 2ΓSASϑ.

(38)

where ξ = θ + xmΓmϑ with m = 0, ..., 3. The constant spinors θ
and ϑ generate Poincaré supersymmetry transformations and
special superconformal transformations respectively.
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Half-BPS bosonic WLs

In the Euclidean signature, the superconformal transformations
are formally the same as (38), but there are no reality conditions
for the spinors.

The supersymmetries preserved by the bosonic 1/2-BPS
connection

L1/2 = gẋµAµ + igrA5 (39)

on the circle contour (x0, x1, x2, x3) = r(cos τ, sin τ, 0, 0) satisfy

ẋµΓµΓ5ξ = iξ, ⇒ ϑ = −ir−1Γ015θ. (40)
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Selected supercharge

We would like to construct a Wilson loop on the same contour
which is invariant under a super-charge Qs parameterized by

θ =
1

2
χs, ϑ = − i

2r
Γ015χs, (41)

where χ is a complex Grassmann variable and s is a fixed bosonic
spinor.
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Superconnection

We found a connection L which satisfies QsL = DτGs is

L = L1/2 +
r

scΠ−Γ5s
QsGs +

ir

scΠ−Γ5s
G2

s, (42)

with Π− = 1
2 − i

2rΓ5ẋ
mΓm, Gs = mSAS ,
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Superconnection

mS(τ) =cRscΠ−Γ5s[exp

(
− 2iM015√

v20 + v21 + v25

tanh−1

(
v0 + (v1 + iv5) tan

(
τ
2

)√
v20 + v21 + v25

)
] S
R ,

with vµ = scΓµs and (M015)
S
R = scΓ015ΓRΓ

Ss.
For mS(τ) to be periodic, we need to impose√

−1− TrM2
015

2v2
∈ Z. (43)

It is impossible to make mS(τ) anti-periodic.
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“Mutiple copy” or “replica trick”

One can generalize mS to an r × r matrix-valued vector MS and
the connection becomes

L = Ir⊗L1/2+
r

scΠ−Γ5s
MS⊗QsAS+

ir

scΠ−Γ5s
(MS⊗AS)

2. (44)

Because Gs is periodic on the contour, to construct a BPS Wilson
loop we need L to be a supermatrix and only off-diagonal blocks
of MS are nonzero.
Explicitly, we demand MS to be

MS =

(
0 MS

1

MS
2 0

)
. (45)

And then L can be decomposed as

L =

(
B1 F1

F2 B2

)
. (46)
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“Multi-copy” or “replica trick”

Now a BPS Wilson loop preserving the supercharge Qs can be
defined as

Wfer = sTrP exp

(
i

∮
Ldτ

)
. (47)
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Relation with bosonis BPS WLs

One can prove that, at the classical level, Wfer −Wbos = QsV
where

Wbos = sTrP exp

(
i

∮
(Ir ⊗ L1/2)dτ

)
, (48)

with sTr defined as the one in the previous slide, and V is a
complicated function of gauge fields and matter fields.
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Conclusion

We constructed fermionic BPS Wilson loops in N = 2 superconformal
SU(N)× SU(N) quiver theory and N = 4 super Yang-Mills theory.

We constructed timelike BPS Wilson lines in Minkowski spacetime and
circular BPS Wilson loops in Euclidean space.

These Wilson loops involve dimensionful parameters.

For generic values of parameters, they preserve one real (complex)
supercharge in Lorentzian (Euclidean) signature.

Supersymmetry enhancement for Wilson loops happens when the
parameters satisfy certain constraints.
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Outlook

Our Fermionic BPS circular WL is in the same Qs-cohomology of a
corresponding bosonic BPS WL at the classical level. If this is still true
at the quantum level, The fermonic loop will have the same vev as the
corresponding bosonic one.

The vev of bosonic BPS circular WLs has been computed by
localization.

It is valuable to check these predictions by direct perturbative
computaitons.
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Outlook

Further constructions starting with bosonic WLs with fewer
supersymmetries: Zarembo loops (2000) and DGRT loops [Drukker,
Gimobi, Ricci, Trancanelli, 2007].

S-dual and holographic dual of our new fermionic BPS WLs?
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Outlook

Bosonic WLs play at least two roles in the study of integrability of
N = 4 SYM in the plannar limit.

When we insert composite local operators into the WL, ordinary
Wilson line or half-BPS Wilson line provide integrable boundary
conditions/interactions for the open spin chains from the compositie
operators. [Drukker, Kawamoto, 2006][Correa, Leoni, Luque, 2018]

When we consider the correlators of a half-BPS circular WL (in the
fundamental or antisymmetric representations) and a non-BPS single
trace operator in the ’t Hooft limit, this WL will provide an integrable
matrix product state [Jiang, Komatsu, Vescovi, to appear].

It is appealing to explore whether the fermionic WLs constructed here
also have such integrable structure.
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Outlook

For the dCFT point of view, our fermionic WLs can be thought as
irrelevant deformation of Maldacena-Wilson loop.

Any hints about possible UV completion?
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Outlook

Recall that Aharony, Tachikawa and Seiberg showed that the definition
of gauge theories should claim which set of mutually local
Wilson-’t Hooft loop operators should be included.

Should the BPS Wilson-’t Hooft loop operators be included in this set
when we study supersymmetric gauge theories?
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Thanks for Your Attention !

Jun-Bao Wu CJQS-TJU


