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• In supersymmetric quantum mechanics (1d theory) with Hamiltonian

H. We can compute

partition function: Tre−βH

Witten index: Tr(−1)F e−βH = Tr(−1)F

Only ground states contribute to Witten index, encoding Euler number

of the target space.

Path integral formalism: compactify the Euclidean time on S1.

The (−1)F factor changes the fermionic boundary condition, from anti-

periodic to periodic.

• In the original paper (1982), Witten considered compactification of 4d

supersymmetric field theory on T3. The Witten index gives a constrain

on supersymmetry breaking. (some discussions on phenomenology)



• Superconformal index: radial quantization on S3× time J. Kinney, J. M.
Maldacena, S. Minwalla, and S. Raju, arXiv:hep-th/0510251. Formal
schematic definition

I = Tr (−1)F e−µiTie−βδ, δ = 2{Q,Q†},
where Q is a supercharge and Ti a complete set of generators that
commute with Q and with each other. µi are fugacities.
By standard arguments, states with δ 6= 0 cancel, so the index counts
states with δ = 0 (short multiplets) and is independent of β.
The indices are a functions of 2, 3 and 4 continuous variables for
N = 1,2,4 superconformal symmetry PSU(2,2|N).

• The case of N = 4 super-Yang-Mills theory with SU(N) gauge group
is particularly interesting due to the holographic duality with type IIB
string theory on AdS5 × S5 background.

• The superconformal indices have many important applications. Most
notably, they are essential for the understandings of the microscopic
entropy of supersymmetric AdS5 black holes. Their various expansions
can be interpreted as the contributions of D-branes. (See the paper
for references)



• For theories with a Lagrangian description (not necessarily at con-
formal fixed point), the d-dimensional superconformal index can be
computed by path integral formalism as the supersymmetric partition
function on S1 × Sd−1, which localizes to a matrix integral (which can
be obtained alternatively by counting operators using state/operator
correspondence).

• A particular specialization of the superconformal index, known as the
Schur index A. Gadde, L. Rastelli, S. S. Razamat, and W. Yan, arXiv:1110.3740,
has some further nice mathematical properties.
For example, in some cases it can be computed from the q-deformed 2d
Yang-Mills A. Gadde et al , arXiv:1110.3740, or the vacuum character
of a corresponding chiral algebra C. Beem et al, arXiv:1312.5344.

• Some remarkable (quasi)-modular properties of the index are studied re-
cently in Y. Pan and W. Peelaers, arXiv:2112.09705; C. Beem, P. Singh,
and S. S. Razamat, arXiv:2112.10715 in the context of a larger class
of theories, based on some earlier works, e.g. J. Bourdier, N. Drukker,
and J. Felix, arXiv:1507.08659.



• On the other hand, topological string theory on Calabi-Yau three-folds

has been an active research area for decades, with many sophisticated

available techniques.

• The goal of the present work is to apply one of these techniques to

the calculations of Schur index. The relation between superconformal

index and topological string amplitude has appeared before, in e.g.

Kim, S.-S. Kim, and K. Lee, arXiv:1206.6781; A. Iqbal and C. Vafa,

arXiv:1210.3605.

• In those cases, one has a 5d supersymmetric field theory from compact-

ifying M-theory on a Calabi-Yau three-fold, and the 5d Nekrasov parti-

tion function on the Omega background S1×R4
ε1,ε2

is simply equivalent

to the refined topological string amplitude on the Calabi-Yau space.



• The 5d superconformal index at the fixed point of renormalization

group flow can be computed by localization method as the partition

function of the 5d field theory on S1 × S4, and is written as an inte-

gral of a product of two complex conjugate refined topological string

amplitudes (5d Nekrasov partition function).

• This is similar to Pestun’s calculation of N = 2 supersymmetric parti-

tion function on S4, which localizes to a matrix integral in terms of 4d

Nekrasov partition function.

• Similar relations appear also for 5d supersymmetric partition function

on S5 and 6d superconformal index, which are computed by an inte-

gral of a triple product of refined topological string amplitudes, e.g.

G. Lockhart and C. Vafa, arXiv:1210.5909.



• Our setting is somewhat different, as the 4d superconformal index

considered here seems much simpler than the 5d or 6d cases. We will

directly apply topological string method of modular anomaly equation

to the calculations of 4d Schur index, instead of writing it as an integral

of topological string amplitudes.

• It is well known that the Eisenstein series E4, E6 freely generate the

modular forms of SL(2,Z). The second Eisenstein series E2 is not

exactly modular but transforms with a shift. The ring of polynomials of

E2, E4, E6, known as quasi-modular forms, is closed under the derivative

action q ddq.

• The quasi-modular forms appear in many studies in topological string

theory, especially in geometries containing elliptic curves. In some cases

there is a modular anomaly equation containing derivative with respect

to the quasi-modular E2, which is related to the celebrated BCOV holo-

morphic anomaly equation for general Calabi-Yau geometries without

necessarily elliptic curves.



• For the case of N = 4 supersymmetry, besides a universal fugacity
parameter denoted as q, the Schur index may have an extra flavor
fugacity from the symmetry SU(2)F ⊂ SU(4)R. We will simply consider
the unflavored index. As in the literature, it is convenient to treat the
even and odd ranks of the gauge groups separately.

• We consider first the simpler SU(2N + 1) case. The formula is

I2N+1(q) =
q
N(N+1)

2

(2N + 1)!

∞∏
n=1

(
1− qn−

1
2

1− qn
)2×

∮ 2N+1∏
i=1

dzi
2πizi

∏
i 6=j

(1−
zi
zj

)PE[iV (q
1
2)(

2N+1∑
i,j=1

zi
zj

)],

(1)

where iV (q) = 2q
1+q is the 1/8 BPS letter index, and PE[f(xi)] =

exp[
∑∞
k=1

f(xki )
k ] denotes the well known plethystic exponential applied

to all variables q, zi.
We have chosen the prefactors in the convention so that the results
would have nice modular properties. For a finite N , it is not difficult
to perform the contour integrals which are residues around zi ∼ 0 to
obtain the q-expansion series to a finite order.



• Although the formula appears to have half integer powers in the q-

expansion, the result actually has only integer powers. From the for-

mula (1) it is obvious that the q-expansion starts at a high power as

I2N+1(q) = O(q
N(N+1)

2 ). (2)

• The exact calculations of (1) were first performed in J. Bourdier,

N. Drukker, and J. Felix, arXiv:1507.08659 in terms of elliptic inte-

grals and there is also an all order q-series formula

I2N+1(q) =
∞∏

m=1

(1− qm)−3
∞∑
n=0

(−1)n×

[
(2N + 1 + n

2N + 1

)
+
(2N + n

2N + 1

)
]q

(n+N)(n+N+1)
2 .

(3)

• The results were organized into nice formulas in terms of quasi-modular

forms in Y. Pan and W. Peelaers, arXiv:2112.09705; C. Beem, P. Singh,

and S. S. Razamat, arXiv:2112.10715 .



• We can list the formulas in term of Eisenstein series for the first few

orders

I1(q) = 1, I3(q) =
E2

2
+

1
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,
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4
+
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16
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,

I7(q) =
E3

2

48
−
E2E4

8
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(4)

• A general formula for all N ’s is also conjectured by Pan and Peelaers

I2N+1 =
N∑
k=0

λ
(N)
k Ẽ2k, (5)

where λ
(N)
k ’s are constants determined by some rather complicated

relations, and Ẽ2k is a quasi-modular form of homogeneous weight 2k

defined by

Ẽ0 = 1, Ẽ2k =
∑∑

j≥1 jnj=k

∏
p≥1

1

np!
(−
E2p

2p
)np . (6)



• We use the following convention for the weight 2k Eisenstein series

E2k = −
B2k

(2k)!
+

2

(2k − 1)!

∞∑
n=1

n2k−1qn

1− qn
. (7)

There are well known relations e.g. E8 ∼ E2
4, E10 ∼ E4E6.

The well known derivative formulas are due to ledendary Ramanujan

q
d

dq
E2 = −E2

2 + 5E4, q
d

dq
E4 = −4E2E4 + 14E6,

q
d

dq
E6 = −6E2E6 +

60E2
4

7
.

(8)

• Inspired particularly by the studies of the BPS partition functions of

E-strings in J. A. Minahan, D. Nemeschansky, and N. P. Warner,

arXiv:hep-th/9707149, we propose the following modular anomaly equa-

tion for the Schur index

∂E2
I2N+1 =

N∑
k=1

ckI2N+1−2k, (9)

where ck are some constants to be determined in a moment.



• We note that by string duality, the partition function in Minahan et al
arXiv:hep-th/9707149 is equivalent to genus zero sector of topological
string theory on a local half K3 Calabi-Yau space, and the modular
anomaly equation has been subsequently generalized to higher genus
Hosono et al 1999 and to refined theory Huang et al 2013.

• The modular anomaly equation in Minahan et al arXiv:hep-th/9707149
is recursive in the number of E-strings, which is identified with the rank
of gauge group in another equivalent description in terms of N = 4
topological Yang-Mills theories on a half K3 surface Minahan et al,1998.
Therefore it is reasonable that we can also have an equation (9) recur-
sive in the rank of the gauge group.

• There are certainly some notable differences with the usual form of
modular anomaly equation familiar in topological string theory.
(1) The right hand side of our equation (9) is purely linear in the lower
rank indices, without the usual quadratic terms.
(2) As seen from (4), the Schur index is inhomogeneous, i.e. a com-
bination of quasi-modular forms of different weights, unlike the usual
homogenous forms.



• The modular anomaly equation (9) determines the Schur index up

to an E2 independent term, a modular ambiguity which is polynomial

of E4, E6. Since the index I2N+1 has a maximal weight of 2N , the

number of unknown coefficients in the ansatz for modular ambiguity

can be easily counted.

• In general, the dimension of the space of modular forms of weight 2N

is no more than [N6 ] + 1. So in our case we can estimate the number

of unknown coefficients
∑N
k=0([k6] + 1) ∼ N2

12 for large N .

• On the other hand, for a generic modular ambiguity, the q-expansion

of the Schur index starts from the lowest constant q0 term. Simi-

lar to the case of E-string, the vanishing condition (2) imposes very

strong constrains, generically fixing N(N+1)
2 unknown coefficients, al-

ways overdetermining the ansatz.



• Staring from a very simple initial condition I1(q) = 1, c1 = 1
2, we can

recursively efficiently compute all Schur indices I2N+1 and also deter-

mine the constants ck’s in (9), which are 1
2,

1
24,

1
180,

1
1120,

1
6300, · · · . We

then observe a general formula for the constants

ck =
(k − 1)!2

(2k)!
. (10)

• Our anomaly equation (9) is compatible with the general formula (5).

It is easy to see that ∂E2
Ẽ2k+2 = −1

2Ẽ2k, so the weight 2k components

of each term in (9) are always proportional to Ẽ2k. More precisely,

comparing the coefficients in (9) and (5) we find the relation

λ
(N)
k+1 = −2

N∑
l=1

clλ
(N−l)
k , k ≥ 0. (11)



• There is also another interesting method to compute the Schur index.

It is pointed out in M. J. Kang, C. Lawrie, and J. Song, arXiv:2106.12579

that in this case, the Schur index is simply a MacMahon’s generalized

sum-of-divisors function

I2N+1(q) =
∑

0<m1<···<mN

qm1+···+mN

(1− qm1)2 · · · (1− qmN)2
. (12)

• In G. Andrews and S. Rose, arXiv:1010.5769, a recursion relation for

the MacMahon’s function is derived

I2N+1(q) =
1

2N(2N + 1)
[(6I3(q)+N(N−1))I2N−1(q)−2q

d

dq
I2N−1(q)].

(13)

Using the derivative relations of quasi-modular forms (8), it is the clear

that I2N+1 is a inhomogeneous quasi-modular form of weight 2N , and

it can be also easily computed recursively. The q-series formula (3) was

also proved, therefore the equivalence of Schur index and MacMahon’s

function in this case is clear.



• The structure of formula (5) of Schur index is preserved by the recursion

(13) due to the following derivative formula

q
d

dq
Ẽ2k−2 = k(2k + 1)Ẽ2k − 3Ẽ2Ẽ2k−2, (14)

which is a generalization of Ramanujan formulas (8) and can be cer-

tainly checked for any finite k. It should be derivable from the dif-

ferential equations of the twisted Eisenstein series used by Pan and

Peelaers.

• The relation (13) is then equivalent to a recursion for the coefficients

λ
(N)
k =

1

8N(2N + 1)
[(2N − 1)2λ

(N−1)
k − 8k(2k + 1)λ(N−1)

k−1 ], (15)

where in the derivation we only need to look at the E2 monomial term

in Ẽ2k in (6).

For k < 0 or k > N the coefficients are defined as λ(N)
k = 0.

From a simple initial condition λ
(0)
0 = 1 we can then use the recursion

(15) to compute all coefficients.



• For the special cases k = 0 or k = N , simple formulas λ(N)
0 = (2N)!

24N(2N+1)N !2

and λ
(N)
N = (−1)N can be easily derived from the recursion. The re-

cursion (15) looks much simpler than those given by Pan and Peelaers,

but they should certainly give the same result.

• In the paper arXiv:1506.04963, Rose further considered more general

MacMahon’s sum-of-divisors functions, and provide formulas for the

generating functions in terms of Jacobi forms. This turns out to provide

a proof of the anomaly equation (9).

• In our case, the generating function for Schur index can be written in

terms of the Jacobi theta function as

F (q, x) :=
∞∑

N=0

(−1)NI2N+1(q)x2N+1 =
iθ1(q, z)

η(q)3
, (16)

with identification of parameters x = eπiz − e−πiz.



• It is known that a Jacobi forms φm of index m satisfies a modular
anomaly equation

(∂E2
−m(2πz)2)φm = 0. (17)

This has been applied successfully in topological string theory for mak-
ing ansatz, see e.g. Huang et al, 2015.
In our context, the generating function is not exactly a Jacobo form
of SL(2,Z), but of a subgroup with index 1

2. The modular anomaly
equation can be still applied similarly

(∂E2
−

1

2
(2πz)2)F (q, x) = 0. (18)

• Denoting f(x) := (πz)2, we can solve it and show that f(x) has a series
expansion

f(x) = − log2[
1

2
(x+

√
4 + x2)] =

1

2

∞∑
n=1

(−1)n
(n− 1)!2

(2n)!
x2n, (19)

since f(x) satisfies a differential equation (x2 + 4)f ′′(x) + xf ′(x) + 2 =
0. Thus we have derived the modular anomaly equation (9) with the
formulas (10) for the coefficients.



• We can define a generating function

G(x, y) :=
∞∑

N=0

N∑
k=0

λ
(N)
k x2N+1y2k+1. (20)

Using the relation (11), we have

G(x, y) + 2y2G(x, y)f(ix) =
∞∑

N=0

(2N)!

24N(2N + 1)N !2
x2N+1y = 2yf(ix)

1
2.

(21)

So we can also get a solution in terms of elementary functions

G(x, y) =
2yf(ix)

1
2

1 + 4y2f(ix)
. (22)

• One can check the recursion (15) is satisfied due to the differential

equation

[4∂2
x − (x∂x)2 + 4y2∂2

y y
2]G(x, y) = 0. (23)



The SU(2N) case

• This is a little more complicated but similar. The Schur index formula

in our convention is

I2N(q) =
q
N2
2

(2N)!

∮ 2N∏
i=1

dzi
2πizi

∏
i 6=j

(1−
zi
zj

)PE[iV (q
1
2)(

2N∑
i,j=1

zi
zj

)], (24)

similar to (1) but with a different prefactor.

• The vanishing constrains for the index is

I2N(q) = O(q
N2
2 ). (25)

In this case, the q-expansion has half integer powers, so this generically

will impose N2 constrains on the ansatz.



• The modular group is now Γ0(2), whose modular forms are generated

by

Θr,s(q) = θ2(q)4rθ3(q)4s + θ2(q)4sθ3(q)4r, (26)

which has weight 2(r + s).

• Some low order formulas for the Schur indices are also available in the

literature

I2(q) =
E2

2
+

Θ0,1

24
,

I4(q) =
E2

2

8
+
E2Θ0,1

48
+

Θ0,2

1152
−

Θ1,1

576
+
E2

24
+

Θ0,1

288
.

(27)



• The number of unknown coefficients in the modular ambiguity in I2N

is counted by Θr,s(q)’s with r + s ≤ N, r ≤ s, and goes like N2

4 for large

N , much smaller than the number of constrains N2.

• It also turns out that there is no weight zero constant term in the

modular ambiguity, as can be seen from the examples in (27). So

starting also from the simple initial condition I0 = 1, c1 = 1
2, we can

compute all Schur indices and fix the constants ck’s which turn out to

be the same as in the SU(2N + 1) case (10).

• Of course we can also include the constant term in the ansatz for

modular ambiguity, then we simply require the extra initial conditions

for I2, c2 to start the recursive algorithm.

• The Schur index can be represented by another MacMahon’s general-

ized sum-of-divisors function. The procedures and results are similar

to SU(2N + 1) case. We skip the details here.



Discussions

• Although the results for Schur index in the current study have been

available in the literature, we find our method of using the anomaly

equation (9) and the vanishing conditions (2) provides so far the sim-

plest approach with minimal assumptions.

• The vanishing conditions are in fact highly redundant, providing con-

sistency checks by themselves and automatically giving the coefficients

(10) in the anomaly equation.

• Furthermore, using the anomaly equation we are able to solve the gen-

erating functions for the coefficients in the general formulas conjectured

by Pan and Peelaers.



• It is would be interesting to check whether the more general MacMa-

hon’s sum-of-divisors functions studied by Rose 2015 have connections

with Schur indices of some other superconformal field theories.

• Our anomaly equation (9) seems universally simple that it should have a

wider applicability. It would be interesting to apply our proposal to more

general superconformal indices, including more flavor fugacities. More

results in a subsequent paper Y. Hatsuda and T. Okazaki, “N = 2∗

Schur indices,” arXiv:2208.01426 .

• A better understanding of the modular property would help the analysis

of the asymptotic behavior of the index, which is essential for account-

ing for the black hole entropy in holographic duality, e.g. a subsequent

paper G. Eleftheriou, arXiv:2207.14271 .



Thank You


