
Topological modes from non-
inertial frames and holography

Ya-Wen Sun, University of Chinese Academy of Sciences,
第三届全国场论与弦论学术研讨会，Aug. 26th, 2022

Based on arXiv 2004.13380, 2005.02850, 2201.02407 and work in
progress



Motivation
• Previous work on topological hydrodynamic modes: topologically

trivial hydrodynamic system becomes topologically nontrivial
observed in a special non-inertial frame;

• A new observational effect for non-inertial frames in addition to the
famous Unruh effect: topologically nontrivial modes observed in non-
inertial frames which are trivial in inertial frames.

• An example from relativistic hydrodynamics, also non-relativistic
hydrodynamics (Perrot, Delplace, Venaille, 2019, topological modes from
inertial forces)



• Further generalizations: holographic realization; other possible
systems.

‣ Holographic calculation of hydrodynamic modes in non-inertial 
frames, which is shown to be the same as the hydrodynamic
calculation;

‣ Topological modes in non-inertial frames for other physical systems: 
fermions; Weyl semimetal observed in a non-inertial frame,
produced due to inertial forces;



Outline

• Topological hydrodynamic modes from non-inertial frames

• Holographic calculation of hydrodynamic modes in non-inertial

frames

•Weyl semimetal from non-inertial reference frame

• Summary and open questions



I. Topological hydrodynamic modes from
non-inertial frames
§ Motivation for the study of topological hydrodynamic modes:

• Classical topological states: sounds/optics

• Classical topological states in gravitational waves?

• Holography: gravitons, hydrodynamic modes

• Possible experimental observational effects?

• Hydrodynamics: small perturbations close to thermal equilibrium, 

long wave length and long time limit;



Hydrodynamic modes, dynamics determined by the conservation equation

I. Topological hydrodynamic modes from non-
inertial frames
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I. Topological hydrodynamic modes from non-
inertial frames
•With non-conservation terms

k

E

mb

Similar but different spectrum was also found in non-
relativistic hydro in e.g. Perrot et.al., Nature Physics, 2019.



I. Topological hydrodynamic modes from
non-inertial frames: topological invariants
• Topological invariants

• Symmetry protected topological states: calculate the topological 
invariants at high symmetric points; reflectional symmetry in two 
spatial directions



Final result for the
topological invariant:

I. Topological hydrodynamic modes from
non-inertial frames: topological invariants
• The reflection symmetry:
• High symmetric point:
• The topological invariant                                                     

Ni : the number of occupied bands at point pi
with eigenvalue of the reflection symmetry M
to be 1 
|ni >: the occupied state at point pi



I. Topological hydrodynamic modes from non-inertial
frames

• The most interesting and natural possibility for the symmetric
tensor field: the gravitational field

• Energy momentum is conserved covariantly
• Expanding the covariant conservation equation to first order of



I. Topological hydrodynamic modes from non-inertial
frames

•With the following nonzero components of

• The covariant conservation equation gives the non-conservation
terms needed

infinite many possibilities
for , here we pick a
simple choice



• How do we get this gravitational field ?

• Surprisingly all Riemann tensors vanish for this metric!

• could emerge from a coordinate transformation from the flat

spacetime

• In a specific non-inertial frame, we could observe hydrodynamic 

modes that are topologically protected even when they are 

topologically trivial in the original inertial frame.

• Another effect for accelerating frames in addition to the Unruh

effect.



I. Topological hydrodynamic modes from
non-inertial frames: the non-inertial frame
• A rest observer in the new reference frame

• Solving this equation, we have the movement of the rest observer in
the original flat spacetime (at leading order in k)

• Integrating these equations with appropriate boundary conditions,
we have



I. Topological hydrodynamic modes from
non-inertial frames: the non-inertial frame
• The rest observer in the new reference frame:
• Rotating with a constant angular velocity in the y-z
plane
• Accelerating with a constant acceleration in the x
direction

x direction



I. Topological hydrodynamic modes from
non-inertial frames: the non-inertial frame
• At the same time, the axis of the observer needs to rotate

• The best choice is to stay at the origin and the axis rotates at the
same time



II. Holographic calculation for hydrodynamic
modes in non-inertial frames
• Holographic realization, strongly coupled hydrodynamic systems.
• Hydrodynamic modes-> gravitons
• Non-conservation of energy momentum: massive gravity?
• Another prescription for holographic realization of this system:
holographic non-inertial reference frames, coordinate transformation from
the original AdS/CFT correspondence
• First step to show that it is indeed the holographic system needed:
reproduce the Ward identities due to the energy momentum non-
conservation terms



• Ward identities for the conserved energy momentum tensor

• With energy momentum non-conservation terms, the Ward identities
become

II. Holographic calculation for hydrodynamic modes
in non-inertial frames



• A prescription to calculate holographicWard identities without
calculating all the components of the Green functions.
• For perturbations of the metric , deriving equations of motion
for this system and substituting the solutions into the action, we could
get the on-shell action.
• The action has to be composed of gauge invariant combinations;
holographicWard identities--- diffeomorphism;

II. Holographic calculation for hydrodynamic modes
in non-inertial frames



• For asymptotic AdS systems, all possible gauge invariant
combinations:

II. Holographic calculation for hydrodynamic modes
in non-inertial frames



• The on-shell action should be

• All 55 components of Green functions should be expressed using the
21 independent Gij functions.
• Eliminating all Gij’s, we obtain 34 identities for holographic Green

functions.
• 40 Ward identities need to be reproduced, 6 of which could be 

derived from the other 34 identities
• They match to each other.

II. Holographic calculation for hydrodynamic modes
in non-inertial frames



II. Holographic calculation for hydrodynamic
modes in non-inertial frames
• The metric for the coordinate transformed AdS spacetime:

• With the new metric, the form of the on-shell action would be 
different from the AdS one, nevertheless, it can still be written as 
sums of gauge invariant terms. 



• New gauge invariant combinations

Using the same method as
the asymptotic AdS case,
we could match theWard
identities from both sides

II. Holographic calculation for hydrodynamic modes
in non-inertial frames



• Remarks:

• This method for calculating holographicWard identities could

also be generalized to massive gravities.

• Other holographic realizations, massive gravity? External fields?

• Next step: hydrodynamics modes reproduced in holography;

II. Holographic calculation for hydrodynamic modes
in non-inertial frames



II. Holographic calculation for hydrodynamic
modes in non-inertial frames
• Hydrodynamic modes in holography: perturbations of the metric

a (Policastro, Son, Starinets, 2002) ;

• Solve the equations of motion order by order in w and q; obtain the
Green functions; poles in the Green functions
• The poles could be directly seen from the coefficients in the solutions

of perturbations; assume k to be in the z direction;
• For the vector modes:



II. Holographic calculation for hydrodynamic
modes in non-inertial frames
• For the scalar modes

• Coefficients C’s are determined by the boundary values of H fields
• Solve for the coefficients and the determinant from the linear
equation gives the poles



II. Holographic calculation for hydrodynamic
modes in non-inertial frames
• A simple way to calculate the hydrodynamic modes in non-inertial

frames without solving the equations in the new background
geometry:
‣ Start from the inertial frame results and perform a rotation coordinate

transformation to put k in arbitrary direction;
‣ Perform a coordinate transformation (change of reference frame) in the

fields;
‣ Find the poles of the transformed system from the determinant of the

equation for the coefficients;
• Incoming boundary condition at the horizon: does not change



II. Holographic calculation for hydrodynamic
modes in non-inertial frames

• The determinant in the coefficient matrix gives (in the final result, k
chosen to be in the kx direction; note that it cannot be chosen to be
in the kx direction at the beginning as derivatives in k are needed in
the process)

k

E

Thus the poles are at ,
which agrees with the hydrodynamic results.



III. Topological modes in non-inertial frames for 
other physical systems: fermions
• Motivation: generalization to other systems, i.e. could other trivial

states be seen as topologically nontrivial by a non-inertial observer?
• Fermions, gapless topological systems: semimetals
• The Lagrangian for the Weyl semimetal

• Could a Dirac fermion (without the b term above) in an inertial
frame be seen as a Weyl semimetal in a non-inertial frame?



III. Topological modes in non-inertial frames for 
other physical systems: fermions
• Weyl semimetals in non-inertial frames from inertial frame Dirac

fermions
• Start from the equation of motion for the fermion in the non-inertial

frame

• With a background metric different from the flat one
• Try to reproduce the Weyl Lagrangian from a specific metric



III. Topological modes in non-inertial frames for 
other physical systems: fermions
• Assume that
• We have an extra term in the equation of motion

• If we choose

• Then we have , which gives the Weyl Lagrangian



III. Topological modes in non-inertial frames for 
other physical systems: fermions
• We have
• With the spectrum



III. Topological modes in non-inertial frames for 
other physical systems: fermions
• The metric again has all zero Riemann tensors: a non-inertial

reference frame
• Solve for the reference frame:

• The non-inertial frame: elastic observers, i.e. the observer at rest in
the new frame is not a rigid body in the original inertial frame
• The formula for the movement of the accelerating observer in the

inertial frame



III. Topological modes in non-inertial frames for 
other physical systems: fermions

Several remarks
§ The only scale of the system: b
§ t <<1/b, only at an instant, any use in real systems?
§ b, m are both small enough in real systems?

The movement of the material (rest in the
inertial frame) seen by the observer

The movement of the accelerating
observer in the inertial frame



III. Topological modes in non-inertial frames for 
other physical systems: fermions
• The underlying mechanism that topologically trivial systems could

become topologically nontrivial

✯How could a single band crossing point become two or four crossing
nodes just viewed by a different observer: real modes of w and k could
become complex after a reference frame change and complex modes
become real, i.e. we are observing the topological structure in the complex
spectrum.

✯Viewed from the physical perspective: inertial forces introduce
interactions that change the topological structure of the system;



Summary

• Based on our previous work of topologically nontrivial hydrodynamic
modes observed in a non-inertial reference frame, we have shown
that
‣ In the non-inertial frame holographic system, the Ward identities
are shown to be the same and the same hydrodynamic modes are
obtained;
‣ This property could be generalized to fermionic systems, for
which we have shown that normal Dirac fermions could become a
Weyl semimetal observed in a non-inertial frame, which, however,
requires an elastic observer.



Open questions

• Topological states from non-inertial frames in other systems, e.g.
photons?
• Possible other fermionic topological states from non-inertial frames?
• Gapped ones?
• Any realistic realization that could be observed in laboratories?
• More explicit explanation for the underlying mechanism?
• More transport properties?



Thank you!


