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• Generalizing	group	(invertible)	symmetries	to	
fusion	category	(non-invertible)	symmetries

• Understanding	bulk/boundary	(TQFT/CFT)	
correspondence	using	categorical	symmetries

• Finding	new	constraints	on	the	IR	theories	with	a	
given	UV	theory
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• Introduction	to	fusion	category	and	categorical	
symmetry


• Categorical	symmetry	in	3D	TQFT 
	gauge	theory	 	Dijkgraaf-Witten	 	gauge	theory	 	

Turaev-Viro-Levin-Wen	model

• CFT	on	the	2D	boundary 

categorical	symmetry	in	Ising	and	tricritical	Ising	CFT


• Categorical	symmetry	in	3D	Fermionic	TQFT 
superfusion	category,	fermionic	Turaev-Viro-Levin-Wen	model


• SCFT	on	the	2D	boundary 
tricritical	Ising	minimal	model,	parafermion	model

ℤ2 → G →



From	group	to	representations

4



From	group	to	representations

4

• Group 
g ⋅ h = gh, 1, (g ⋅ h) ⋅ k = g ⋅ (h ⋅ k), g ⋅ g−1 = 1



From	group	to	representations

4

• Group 
g ⋅ h = gh, 1, (g ⋅ h) ⋅ k = g ⋅ (h ⋅ k), g ⋅ g−1 = 1

• Group	representation 
ρ1 ⊗ ρ2 ∼ ⊕i ρi, 1, (ρ1 ⊗ ρ2) ⊗ ρ3 ∼ ρ1 ⊗ (ρ2 ⊗ ρ3), ρ ⊗ ρ̄ ∼ 1 ⊕ . . .



From	group	to	representations

4

• Group 
g ⋅ h = gh, 1, (g ⋅ h) ⋅ k = g ⋅ (h ⋅ k), g ⋅ g−1 = 1

• Group	representation 
ρ1 ⊗ ρ2 ∼ ⊕i ρi, 1, (ρ1 ⊗ ρ2) ⊗ ρ3 ∼ ρ1 ⊗ (ρ2 ⊗ ρ3), ρ ⊗ ρ̄ ∼ 1 ⊕ . . .

• Tannaka	duality:	we	can	reconstruct	 	from	Rep( )	
(including	reps,	CG	or	3-j	symbols	,	6-j	symbols)

G G



From	group	to	representations

4

• Group 
g ⋅ h = gh, 1, (g ⋅ h) ⋅ k = g ⋅ (h ⋅ k), g ⋅ g−1 = 1

• Group	representation 
ρ1 ⊗ ρ2 ∼ ⊕i ρi, 1, (ρ1 ⊗ ρ2) ⊗ ρ3 ∼ ρ1 ⊗ (ρ2 ⊗ ρ3), ρ ⊗ ρ̄ ∼ 1 ⊕ . . .

• Tannaka	duality:	we	can	reconstruct	 	from	Rep( )	
(including	reps,	CG	or	3-j	symbols	,	6-j	symbols)

G G

• Slogan	for	category:	Morphisms	(maps)	are	more	
important	than	objects	(sets)



From	group	to	representations

4

• Group 
g ⋅ h = gh, 1, (g ⋅ h) ⋅ k = g ⋅ (h ⋅ k), g ⋅ g−1 = 1

• Group	representation 
ρ1 ⊗ ρ2 ∼ ⊕i ρi, 1, (ρ1 ⊗ ρ2) ⊗ ρ3 ∼ ρ1 ⊗ (ρ2 ⊗ ρ3), ρ ⊗ ρ̄ ∼ 1 ⊕ . . .

• Tannaka	duality:	we	can	reconstruct	 	from	Rep( )	
(including	reps,	CG	or	3-j	symbols	,	6-j	symbols)

G G

• Slogan	for	category:	Morphisms	(maps)	are	more	
important	than	objects	(sets)

• ⼈的本质是⼀切社会关系的总和



From	group	to	representations

4

• Group 
g ⋅ h = gh, 1, (g ⋅ h) ⋅ k = g ⋅ (h ⋅ k), g ⋅ g−1 = 1

• Group	representation 
ρ1 ⊗ ρ2 ∼ ⊕i ρi, 1, (ρ1 ⊗ ρ2) ⊗ ρ3 ∼ ρ1 ⊗ (ρ2 ⊗ ρ3), ρ ⊗ ρ̄ ∼ 1 ⊕ . . .

• Tannaka	duality:	we	can	reconstruct	 	from	Rep( )	
(including	reps,	CG	or	3-j	symbols	,	6-j	symbols)

G G

• Slogan	for	category:	Morphisms	(maps)	are	more	
important	than	objects	(sets)

• ⼈的本质是⼀切社会关系的总和

• Particles	are	defined	by	its	interactions	with	others
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• simple	objects	{a,b,c,…}
• morphism

• associator

• pentagon	equation

6-j	symbol

(a ⊗ b) ⊗ c → a ⊗ (b ⊗ c)

CG	coefficient

a ⊗ b = ⊕c Na,b
c c

G-irreps
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• {Topological	defect	lines}	is	a	fusion	category	for	2D	QFT	
(not	only	in	CFT)

• Group-like	symmetry	if	the	defect	is	invertible:	a ⊗ ā = 1
• Can	be	generalized	to	higher	dimensions

Topological	defect	line	and	categorical	symmetry	
in	2D

6

=

= ∑ (Fa,b,c
d )e, f
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• Toric	code	model	(Kitaev	1997)	=	lattice	 	gauge	
theory

ℤ2

H = − ∑
s

As − ∑
p

Bp
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• Excitations	of	toric	code:	{1,	e,	m,	f=em}
• Wilson/’t	Hooft	lines	as	worldlines	of	Electric/
magnetic	charges

• Wilson/’t	Hooft	loops	generate	invertible	
anomalous	 	1-form	symmetry	(codim-2	
submanifold)

(ℤ2)2

Wilson/’t	Hooft	loops	as	1-form	symmetries
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• 3D	gauge	theory	with	gauge	group	 ,	3-cocycle	G
ω3 ∈ H3(BG, U(1))

• Excitations: 
flux	(’t	Hooft	line):	conjugacy	class	of	G 
charge	(Wilson	line):	irrep	of	G 
bound	state:	twisted	irrep	of	centralizer	of	flux

• Excitations	described	by	representation	of	twisted	
quantum	double	Dω3(G)

• Wilson/’t	Hooft	loops	as	non-invertible	categorical	
symmetries	if	G	is	non-Abelian



3D	Turaev-Viro-Levin-Wen	model

11



3D	Turaev-Viro-Levin-Wen	model

11

• 3D	manifold	invariants 
(Jones,	Witten,	Reshetikhin-Turaev,	…)



3D	Turaev-Viro-Levin-Wen	model

11

• 3D	manifold	invariants 
(Jones,	Witten,	Reshetikhin-Turaev,	…)

• Generalization	of	gauge	theory



3D	Turaev-Viro-Levin-Wen	model

11

• 3D	manifold	invariants 
(Jones,	Witten,	Reshetikhin-Turaev,	…)

• Generalization	of	gauge	theory
• Hilbert	space



3D	Turaev-Viro-Levin-Wen	model

11

• 3D	manifold	invariants 
(Jones,	Witten,	Reshetikhin-Turaev,	…)

• Generalization	of	gauge	theory
• Hilbert	space
• Hamiltonian
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• Input	fusion	category	𝒞
• Output	TQFT	excitations	in	Drinfeld	center	 :	
topological	defect	lines	as	categorical	symmetry

Z(𝒞)

Turaev-Viro 
-Levin-Wen

fusion	category	𝒞

TQFT	with	topological	defect	lines	in	Z(𝒞)Z

𝒞

Z(𝒞)



Gauging	e-m	duality:	3D	Z(Ising)	TQFT

13



• 3D	 	gauge	theory,	e-m	duality	topological	defect	surface	(0-
form	 	symmetry)

ℤ2
ℤ2

Gauging	e-m	duality:	3D	Z(Ising)	TQFT

13



• 3D	 	gauge	theory,	e-m	duality	topological	defect	surface	(0-
form	 	symmetry)

ℤ2
ℤ2

• Gauging	e-m	duality	 	symmetry	 	Turaev-Viro-Levin-Wen	
model	with	input	category	 =Ising	 	3D	TQFT	 

=Ising)	=	

ℤ2 →
𝒞 →

Z(𝒞 Ising ⊠ Ising

Gauging	e-m	duality:	3D	Z(Ising)	TQFT

13

gauging	  
duality	symm

ℤ2



• 3D	 	gauge	theory,	e-m	duality	topological	defect	surface	(0-
form	 	symmetry)

ℤ2
ℤ2

• Gauging	e-m	duality	 	symmetry	 	Turaev-Viro-Levin-Wen	
model	with	input	category	 =Ising	 	3D	TQFT	 

=Ising)	=	

ℤ2 →
𝒞 →

Z(𝒞 Ising ⊠ Ising

Gauging	e-m	duality:	3D	Z(Ising)	TQFT

13

gauging	  
duality	symm

ℤ2



• 3D	 	gauge	theory,	e-m	duality	topological	defect	surface	(0-
form	 	symmetry)

ℤ2
ℤ2

• Gauging	e-m	duality	 	symmetry	 	Turaev-Viro-Levin-Wen	
model	with	input	category	 =Ising	 	3D	TQFT	 

=Ising)	=	

ℤ2 →
𝒞 →

Z(𝒞 Ising ⊠ Ising
• Gauge	theory	to	non-gauge	theory

Gauging	e-m	duality:	3D	Z(Ising)	TQFT

13

gauging	  
duality	symm

ℤ2



• 3D	 	gauge	theory,	e-m	duality	topological	defect	surface	(0-
form	 	symmetry)

ℤ2
ℤ2

• Gauging	e-m	duality	 	symmetry	 	Turaev-Viro-Levin-Wen	
model	with	input	category	 =Ising	 	3D	TQFT	 

=Ising)	=	

ℤ2 →
𝒞 →

Z(𝒞 Ising ⊠ Ising
• Gauge	theory	to	non-gauge	theory
• {gauge	theories}	is	NOT	closed	under	gauging

Gauging	e-m	duality:	3D	Z(Ising)	TQFT
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gauging	  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• Bulk:	3D	Z(Ising)	TQFT,	boundary:	which	2D	CFT?
• 3D	bulk	RG	 	1+1D	boundary	anyon	chain	 	
RSOS	model	 	2D	CFT

→ →
→

anyon	chain	->	spin	chain
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• Hamiltonian	from	Temperley-Lieb	algebra
• Phase	diagram	(Rahmani-Zhu-Franz-Affleck	2015)
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• Q:	How	to	add	fermion	to	fusion	category
• simple	objects:	m-type	if	 ,	q-type	if	End(a) = ℂ

End(a) = ℂ1|1 = ℂl1
• morphism	is	super	vector	space:	can	be	bosonic	or	
fermionic

• associator

F = Fbc†
αc†

βcνcμ

	is	 -gradedμ ℤ2
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(−1)|α|⋅|δ|
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• A	construction	of	3D	spin-TQFT

• Input:	superfusion	category	𝒞f

• Output:	Drinfeld	center	Z(𝒞f )
• Excitation	worldline	as	fermionic	categorical	
symmetry
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• Gauging	e-m	duality	symmetry	in	3D	 	gauge	theoryℤN

• 3D	TVLW	TQFT	from	Tambara-Yamagami	category	=	
	with	{1,2,...,N, σ} σ × σ = 1 + . . . + N

• 2D	boundary	anyon	chain 
 

• One	natural	Hamiltonian:	self-dual	N-state	Potts	
model
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• Supersymmetry	after	fermionization
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• Fermionic	categorical	symmetry	 	all	energy	levels	
are	bosonic/fermionic	degenerate

→

• Claim:	There	exists	enhanced	fermionic	chiral	
algebra	if	 	(mod	4)N = 2

3D	spin	TQFT fermionic	TDL	acting

on	2D	boundary

anyon	chain 

[ℒ, H ] = 0

{ℒ, (−1)F} = 0
degenerate	levels
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Thank	you!


